148 research outputs found

    Investigation of the role of thermal boundary layer processes in initiating convection under the NASA SPACE Field Program

    Get PDF
    The current NWS ground based network is not sufficient to capture the dynamic or thermodynamic structure leading to the initiation and organization of air mass moist convective events. Under this investigation we intend to use boundary layer mesoscale models (McNider and Pielke, 1981) to examine the dynamic triggering of convection due to topography and surface thermal contrasts. VAS and MAN's estimates of moisture will be coupled with the dynamic solution to provide an estimate of the total convective potential. Visible GOES images will be used to specify incoming insolation which may lead to surface thermal contrasts and JR skin temperatures will be used to estimate surface moisture (via the surface thermal inertia) (Weizel and Chang, 1988) which can also induce surface thermal contrasts. We will use the SPACE-COHMEX data base to evaluate the ability of the joint mesoscale model satellite products to show skill in predicting the development of air mass convection. We will develop images of model vertical velocity and satellite thermodynamic measures to derive images of predicted convective potential. We will then after suitable geographic registration carry out a pixel by pixel correlation between the model/satellite convective potential and the 'truth' which are the visible images. During the first half of the first year of this investigation we have concentrated on two aspects of the project. The first has been in generating vertical velocity fields from the model for COHMEX case days. We have taken June 19 as the first case and have run the mesoscale model at several different grid resolutions. We are currently developing the composite model/satellite convective image. The second aspect has been the attempted calibration of the surface energy budget to provide the proper horizontal thermal contrasts for convective initiation. We have made extensive progress on this aspect using the FIFE data as a test data set. The calibration technique looks very promising

    Reducing Noise in the MSU Daily Lower-Tropospheric Global Temperature Dataset

    Get PDF
    The daily global-mean values of the lower-tropospheric temperature determined from microwave emissions measured by satellites are examined in terms of their signal, noise, and signal-to-noise ratio. Daily and 30-day average noise estimates are reduced by, almost 50% and 35%, respectively, by analyzing and adjusting (if necessary) for errors due to (1) missing data, (2) residual harmonics of the annual cycle unique to particular satellites, (3) lack of filtering, and (4) spurious trends. After adjustments, the decadal trend of the lower-tropospheric global temperature from January 1979 through February 1994 becomes -0.058 C, or about 0.03 C per decade cooler than previously calculated

    Origins Of Tax Law: The History Of The Personal Service Corporation

    Full text link

    Study of atmospheric dynamics

    Get PDF
    In order to better understand the dynamics of the global atmosphere, a data set of precision temperature measurements was developed using the NASA built Microwave Sounding Unit. Modeling research was carried out to validate global model outputs using various satellite data. Idealized flows in a rotating annulus were studied and applied to the general circulation of the atmosphere. Dynamic stratospheric ozone fluctuations were investigated. An extensive bibliography and several reprints are appended

    Assimilation of Satellite Data in Regional Air Quality Models

    Get PDF
    In terms of important uncertainty in regional-scale air-pollution models, probably no other aspect ranks any higher than the current ability to specify clouds and soil moisture on the regional scale. Because clouds in models are highly parameterized, the ability of models to predict the correct spatial and radiative characteristics is highly suspect and subject to large error. The poor representation of cloud fields from point measurements at National Weather Services stations and the almost total absence of surface moisture availability observations has made assimilation of these variables difficult to impossible. Yet, the correct inclusion of clouds and surface moisture are of first-order importance in regional-scale photochemistry

    Interactions between downslope flows and a developing cold-air pool

    Get PDF
    A numerical model has been used to characterize the development of a region of enhanced cooling in an alpine valley with a width of order (Formula presented.) km, under decoupled stable conditions. The region of enhanced cooling develops largely as a region of relatively dry air which partitions the valley atmosphere dynamics into two volumes, with airflow partially trapped within the valley by a developing elevated inversion. Complex interactions between the region of enhanced cooling and the downslope flows are quantified. The cooling within the region of enhanced cooling and the elevated inversion is almost equally partitioned between radiative and dynamic effects. By the end of the simulation, the different valley atmospheric regions approach a state of thermal equilibrium with one another, though this cannot be said of the valley atmosphere and its external environment.Peer reviewe

    Utility of Geostationary Lightning Mapper-derived lightning NO emission estimates in air quality modeling studies

    Get PDF
    Lightning is one of the primary natural sources of nitric oxide (NO), and the influence of lightning-induced NO (LNO) emission on air quality has been investigated in the past few decades. In the current study an LNO emissions model, which derives LNO emission estimates from satellite-observed lightning optical energy, is introduced. The estimated LNO emission is employed in an air quality modeling system to investigate the potential influence of LNO on tropospheric ozone. Results show that lightning produced 0.174 Tg N of nitrogen oxides (NOx = NO + NO2) over the contiguous US (CONUS) domain between June and September 2019, which accounts for 11.4 % of the total NOx emission. In August 2019, LNO emission increased ozone concentration within the troposphere by an average of 1 %–2 % (or 0.3–1.5 ppbv), depending on the altitude; the enhancement is maximum at ∼ 4 km above ground level and minimum near the surface. The southeastern US has the most significant ground-level ozone increase, with up to 1 ppbv (or 2 % of the mean observed value) difference for the maximum daily 8 h average (MDA8) ozone. These numbers are near the lower bound of the uncertainty range given in previous studies. The decreasing trend in anthropogenic NOx emissions over the past 2 decades increases the relative contribution of LNO emissions to total NOx emissions, suggesting that the LNO production rate used in this study may need to be increased. Corrections for the sensor flash detection efficiency may also be helpful. Moreover, the episodic impact of LNO on tropospheric ozone can be considerable. Performing backward trajectory analyses revealed two main reasons for significant ozone increases: long-distance chemical transport and lightning activity in the upwind direction shortly before the event.</p
    • …
    corecore