161 research outputs found

    Bone morphogenetic protein-4 interacts with activin and GnRH to modulate gonadotrophin secretion in LβT2 gonadotrophs

    Get PDF
    We have shown previously that, in sheep primary pituitary cells, bone morphogenetic proteins (BMP)-4 inhibits FSHβ mRNA expression and FSH release. In contrast, in mouse LβT2 gonadotrophs, others have shown a stimulatory effect of BMPs on basal or activin-stimulated FSHβ promoter-driven transcription. As a species comparison with our previous results, we used LβT2 cells to investigate the effects of BMP-4 on gonadotrophin mRNA and secretion modulated by activin and GnRH. BMP-4 alone had no effect on FSH production, but enhanced the activin+GnRH-induced stimulation of FSHβ mRNA and FSH secretion, without any effect on follistatin mRNA. BMP-4 reduced LHβ mRNA up-regulation in response to GnRH (±activin) and decreased GnRH receptor expression, which would favour FSH, rather than LH, synthesis and secretion. In contrast to sheep pituitary gonadotrophs, which express only BMP receptor types IA (BMPRIA) and II (BMPRII), LβT2 cells also express BMPRIB. Smad1/5 phosphorylation induced by BMP-4, indicating activation of BMP signalling, was the same whether BMP-4 was used alone or combined with activin±GnRH. We hypothesized that activin and/or GnRH pathways may be modulated by BMP-4, but neither the activin-stimulated phosphorylation of Smad2/3 nor the GnRH-induced ERK1/2 or cAMP response element-binding phosphorylation were modified. However, the GnRH-induced activation of p38 MAPK was decreased by BMP-4. This was associated with increased FSHβ mRNA levels and FSH secretion, but decreased LHβ mRNA levels. These results confirm 1. BMPs as important modulators of activin and/or GnRH-stimulated gonadotrophin synthesis and release and 2. important species differences in these effects, which could relate to differences in BMP receptor expression in gonadotrophs

    Evolution of biofilm-forming pathogenic bacteria in the presence of nanoparticles and antibiotic: adaptation phenomena and cross-resistance.

    Full text link
    BackgroundTreatment of bacterial biofilms are difficult and in many cases, expensive. Bacterial biofilms are naturally more resilient to antimicrobial agents than their free-living planktonic counterparts, rendering the community growth harder to control. The present work described the risks of long-term use of an important alternative antimicrobial, silver nanoparticles (NAg), for the first time, on the dominant mode of bacterial growth.ResultsNAg could inhibit the formation as well as eradicating an already grown biofilm of Pseudomonas aeruginosa, a pathogen notorious for its resilience to antibiotics. The biofilm-forming bacterium however, evolved a reduced sensitivity to the nanoparticle. Evidence suggests that survival is linked to the development of persister cells within the population. A similar adaptation was also seen upon prolonged exposures to ionic silver (Ag+). The persister population resumed normal growth after subsequent passage in the absence of silver, highlighting the potential risks of recurrent infections with long-term NAg (and Ag+) treatments of biofilm growth. The present study further observed a potential silver/antibiotic cross-resistance, whereby NAg (as well as Ag+) could not eradicate an already growing gentamicin-resistant P. aeruginosa biofilm. The phenomena is thought to result from the hindered biofilm penetration of the silver species. In contrast, both silver formulations inhibited biofilm formation of the resistant strain, presenting a promising avenue for the control of biofilm-forming antibiotic-resistant bacteria.ConclusionThe findings signify the importance to study the nanoparticle adaptation phenomena in the biofilm mode of bacterial growth, which are apparently unique to those already reported with the planktonic growth counterparts. This work sets the foundation for future studies in other globally significant bacterial pathogens when present as biofilms. Scientifically based strategies for management of pathogenic growth is necessary, particularly in this era of increasing antibiotic resistance

    Identification of epitopes recognised by mucosal CD4+ T-cell populations from cattle experimentally colonised with Escherichia coli O157:H7

    Get PDF
    Additional file 5. Sequence alignment of Intimin epitopes against Intimin sequences from non-O157 EHEC serotypes. Alignment of Intimin CD4+ T-cell epitope sequences with representative Intimin sequences from EHEC serotypes O145, O127, O26, O103, O121, O45 and O111. Percentage values indicate % similarity to the EHEC O157:H7 reference sequence

    Interaction of classical swine fever virus with dendritic cells

    Get PDF
    Functional disruption of dendritic cells (DCs) is an important strategy for viral pathogens to evade host defences. Monocytotropic viruses such as classical swine fever virus (CSFV) could employ such a mechanism, since the virus can suppress immune responses and induce apoptosis without infecting lymphocytes. Here, CSFV was shown to infect and efficiently replicate in monocyte- and in bone marrow-derived DCs. Interestingly, the infected DCs displayed neither modulated MHC nor CD80/86 expression. Stimulation of DCs with IFN-/TNF- or polyinosinic¿polycytidylic acid (pIC) induced phenotypic maturation with increased MHC and CD80/86 expression, both with mock-treated and infected DCs. In addition, the T cell stimulatory capacity of CSFV-infected DCs was maintained both in a polyclonal T cell stimulation and in specific antigen-presentation assays, requiring antigen uptake and processing. Interestingly, similar to macrophages, CSFV did not induce IFN- responses in these DCs and even suppressed pIC-induced IFN- induction. Other cytokines including interleukin (IL)-6, IL-10, IL-12 and TNF- were not modulated. Taken together, these results demonstrated that CSFV can replicate in DCs and control IFN type I responses, without interfering with the immune reactivity. These results are interesting considering that DC infection with RNA viruses usually results in DC activation
    corecore