60 research outputs found

    Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background

    Get PDF
    The detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of general relativity, including direct study of the polarization of gravitational waves. While general relativity allows for only two tensor gravitational-wave polarizations, general metric theories can additionally predict two vector and two scalar polarizations. The polarization of gravitational waves is encoded in the spectral shape of the stochastic gravitational-wave background, formed by the superposition of cosmological and individually unresolved astrophysical sources. Using data recorded by Advanced LIGO during its first observing run, we search for a stochastic background of generically polarized gravitational waves. We find no evidence for a background of any polarization, and place the first direct bounds on the contributions of vector and scalar polarizations to the stochastic background. Under log-uniform priors for the energy in each polarization, we limit the energy densities of tensor, vector, and scalar modes at 95% credibility to Ω0T<5.58×10-8, Ω0V<6.35×10-8, and Ω0S<1.08×10-7 at a reference frequency f0=25 Hz. © 2018 American Physical Society

    On the progenitor of binary neutron star merger GW170817

    Get PDF
    On 2017 August 17 the merger of two compact objects with masses consistent with two neutron stars was discovered through gravitational-wave (GW170817), gamma-ray (GRB 170817A), and optical (SSS17a/AT 2017gfo) observations. The optical source was associated with the early-type galaxy NGC 4993 at a distance of just ∼40 Mpc, consistent with the gravitational-wave measurement, and the merger was localized to be at a projected distance of ∼2 kpc away from the galaxy's center. We use this minimal set of facts and the mass posteriors of the two neutron stars to derive the first constraints on the progenitor of GW170817 at the time of the second supernova (SN). We generate simulated progenitor populations and follow the three-dimensional kinematic evolution from binary neutron star (BNS) birth to the merger time, accounting for pre-SN galactic motion, for considerably different input distributions of the progenitor mass, pre-SN semimajor axis, and SN-kick velocity. Though not considerably tight, we find these constraints to be comparable to those for Galactic BNS progenitors. The derived constraints are very strongly influenced by the requirement of keeping the binary bound after the second SN and having the merger occur relatively close to the center of the galaxy. These constraints are insensitive to the galaxy's star formation history, provided the stellar populations are older than 1 Gyr

    Plagues and peoples revisited

    No full text
    Basic and strategic research for infectious disease control at the interface of the life, health and social science

    Deixis in multimodal human computer interaction: an interdisciplinary approach

    Get PDF
    Kranstedt A, Kühnlein P, Wachsmuth I. Deixis in multimodal human computer interaction: an interdisciplinary approach. In: Camurri A, Volpe G, eds. Gesture-based Communication in Human-Computer Interaction. LNAI 2915. Berlin: Springer; 2004: 112-123.Focusing on deixis in human computer interaction this paper presents interdisciplinary work on the use of co-verbal gesture . Empirical investigations, theoretical modeling, and computational simulations with an anthropomorphic agent are based upon comparable settings and common representations. Findings pertain to the coordination of verbal and gestural constituents in deictic utterances. We discovered high variability in the temporal synchronization of such constituents in task-oriented dialogue, and a theoretical treatment thereof is presented. With respect to simulation we exemplarily show how the influence of situational characteristics on the choice of verbal and nonverbal constituents can be accounted for. In particular, this depends on spatio-temporal relations between speaker and the objects they refer to in dialogue

    Fibroblast Growth Factor 2 Modulates Hypothalamic Pituitary Axis Activity and Anxiety Behavior Through Glucocorticoid Receptors

    No full text
    Background: Despite strong evidence linking fibroblast growth factor 2 (FGF2) with anxiety and depression in both rodents and humans, the molecular mechanisms linking FGF2 with anxiety are not understood. Methods: We compare 1) mice that lack a functional Fgf2 gene (Fgf2 knockout [KO]), 2) wild-type mice, and 3) Fgf2 KO with adult rescue by FGF2 administration on measures of anxiety, depression, and motor behavior, and further investigate the mechanisms of this behavior by cellular, molecular, and neuroendocrine studies. Results: We demonstrate that Fgf2 KO mice have increased anxiety, decreased hippocampal glucocorticoid receptor (GR) expression, and increased hypothalamic-pituitary-adrenal axis activity. FGF2 administration in adulthood was sufficient to rescue the entire phenotype. Blockade of GR in adult mice treated with FGF2 precluded the therapeutic effects of FGF2 on anxiety behavior, suggesting that GR is necessary for FGF2 to regulate anxiety behavior. The level of Egr-1/NGFI-A was decreased in Fgf2 KO mice and was reestablished with FGF2 treatment. By chromatin immunoprecipitation studies, we found decreased binding of EGR-1 to the GR promoter region in Fgf2 KO mice. Finally, we examined anxiety behavior in FGF receptor (FGFR) KO mice; however, FGFR1, FGFR2, and FGFR3 KO mice did not mimic the phenotype of Fgf2 KO mice, suggesting a role for other receptor subtypes (i.e., FGFR5). Conclusions: These data suggest that FGF2 levels are critically related to anxiety behavior and hypothalamic-pituitary-adrenal axis activity, likely through modulation of hippocampal glucocorticoid receptor expression, an effect that is likely receptor mediated, albeit not by FGFR1, FGFR2, and FGFR3
    corecore