3,358 research outputs found

    Start to end simulations of the ERL prototype at Daresbury Laboratory

    Get PDF
    Daresbury Laboratory is currently building an Energy Recovery Linac Prototype (ERLP) that will serve as a research and development facility for the study of beam dynamics and accelerator technology important to the design and construction of the proposed 4th Generation Light Source (4GLS) project. Two major objectives of the ERLP are the demonstration of energy recovery and of energy recovery from a beam disrupted by an FEL interaction as supplied by an infrared oscillator system. In this paper we present start-to-end simulations of the ERLP including such an FEL interaction. The beam dynamics in the highbrightness injector, which consists of a DC photocathode Gun and a superconducting booster, have been modelled using the particle tracking code ASTRA. After the booster the particles have been tracked with the code elegant. The 3D code GENESIS 1.3 was used to model the FEL interaction with the electron beam at 35 MeV. A brief summary of impedance and wakefield calculations for the whole machine is also given

    Ab initio studies of phonon softening and high pressure phase transitions of alpha-quartz SiO2

    Full text link
    Density functional perturbation theory calculations of alpha-quartz using extended norm conserving pseudopotentials have been used to study the elastic properties and phonon dispersion relations along various high symmetry directions as a function of bulk, uniaxial and non-hydrostatic pressure. The computed equation of state, elastic constants and phonon frequencies are found to be in good agreement with available experimental data. A zone boundary (1/3, 1/3, 0) K-point phonon mode becomes soft for pressures above P=32 GPa. Around the same pressure, studies of the Born stability criteria reveal that the structure is mechanically unstable. The phonon and elastic softening are related to the high pressure phase transitions and amorphization of quartz and these studies suggest that the mean transition pressure is lowered under non-hydrostatic conditions. Application of uniaxial pressure, results in a post-quartz crystalline monoclinic C2 structural transition in the vicinity of the K-point instability. This structure, intermediate between quartz and stishovite has two-thirds of the silicon atoms in octahedral coordination while the remaining silicon atoms remain tetrahedrally coordinated. This novel monoclinic C2 polymorph of silica, which is found to be metastable under ambient conditions, is possibly one of the several competing dense forms of silica containing octahedrally coordinated silicon. The possible role of high pressure ferroelastic phases in causing pressure induced amorphization in silica are discussed.Comment: 17 pages, 8 figs., 8 Table

    assessment of pain-related fear in individuals with chronic painful conditions

    Get PDF
    Background: Heightened fear and anxiety related to pain may result in emotional and behavioral avoidance responses causing disability, distress, and depression. Fear and anxiety associated with pain can potentially change the course of the pain experience. It is plausible that fear and anxiety related to pain affect the duration and frequency of pain experienced by the patient. Aim: The study aimed to examine the applicability of the Fear of Pain Questionnaire-III (FPQ-III) in identifying who are likely to report longer duration and greater frequency of pain experience. Methods: To test this hypothesis, a cross-sectional study was conducted with 579 individuals from a community-based sample living with chronic pain. The factor structure and validity of FPQ-III in the community-based sample were also tested. Results: The findings suggest higher fear of severe pain but lower fear of medical pain, associ- ated with longer duration and more frequent pain experience. The analysis also confirmed the three-factor structure of FPQ-III, demonstrating good internal consistency for fear of severe pain (0.71) and fear of medical pain (0.73) and acceptable range for fear of minor pain (0.65). Conclusion: These findings suggest that the FPQ-III can be potentially applied to identify individuals at risk for prolonged continuous pain and as a screening tool to measure fear and anxiety related to pain

    Mechanical versus thermodynamical melting in pressure-induced amorphization: the role of defects

    Full text link
    We study numerically an atomistic model which is shown to exhibit a one--step crystal--to--amorphous transition upon decompression. The amorphous phase cannot be distinguished from the one obtained by quenching from the melt. For a perfectly crystalline starting sample, the transition occurs at a pressure at which a shear phonon mode destabilizes, and triggers a cascade process leading to the amorphous state. When defects are present, the nucleation barrier is greatly reduced and the transformation occurs very close to the extrapolation of the melting line to low temperatures. In this last case, the transition is not anticipated by the softening of any phonon mode. Our observations reconcile different claims in the literature about the underlying mechanism of pressure amorphization.Comment: 7 pages, 7 figure

    Influence of Fear of Pain and Coping Strategies on Health-Related Quality of Life and Patient-Anticipated Outcomes in Patients With Chronic Pain: Cross-Sectional Study Protocol

    Get PDF
    Background: Fear of pain and coping strategies are emotional-behavioral responses to pain and are known to play an important role in the development and maintenance of pain. It is highly likely that fear of pain and coping strategies influence each other, potentially affecting the course of chronic pain. To our knowledge, the relationship between pain, fear of pain and coping strategies, and how they influence patient-anticipated outcomes and health-related quality of life, have not been investigated. Objective: The aims of this study are to test (1) if both fear of pain and/or coping strategies are sufficient causes for maintaining pain; and (2) whether fear of pain influences coping strategies and pain intensity. The study will also examine the impact of fear of pain and coping strategies on health-related quality of life and patient-anticipated outcomes. Methods: The cross-sectional study will be conducted using an online survey. The Fear of Pain Questionnaire-III (FPQ-III), the Brief Coping Inventory (COPE), and EuroQoL-5d (EQ-5D) validated questionnaires will be used to collect data. Information pertaining to demographic factors, pain-related factors, and patient-anticipated outcomes will also be collected. The study has ethics approval from the Human Research Ethics Committee of the University of Adelaide. Study participants will be individuals aged 18 years and above who are experiencing chronic pain (ie, pain lasting more than 6 months). Effect measure modification technique (EMMM) will be used to examine if fear of pain acts as a moderator or mediator between coping strategies and pain. Simple and multinomial logistic regression analysis will be used to examine the effect of fear of pain and coping strategies on health-related quality of life and patient-anticipated outcomes. Results: Recruitment began July 2017 and it is anticipated that data collection will be completed by October 2017. Findings from this study will help to extend our understanding of fear of pain and coping strategies, their interaction, and their impact on health-related quality of life and patient-anticipated outcomes. Conclusions: Fear of pain and coping strategies have significant influence on the experience of chronic pain and its course. This study will help enhance our understanding of the relationship between fear of pain and coping strategies, which may help in developing patient-centered care practices

    A nonparametric urn-based approach to interacting failing systems with an application to credit risk modeling

    Full text link
    In this paper we propose a new nonparametric approach to interacting failing systems (FS), that is systems whose probability of failure is not negligible in a fixed time horizon, a typical example being firms and financial bonds. The main purpose when studying a FS is to calculate the probability of default and the distribution of the number of failures that may occur during the observation period. A model used to study a failing system is defined default model. In particular, we present a general recursive model constructed by the means of inter- acting urns. After introducing the theoretical model and its properties we show a first application to credit risk modeling, showing how to assess the idiosyncratic probability of default of an obligor and the joint probability of failure of a set of obligors in a portfolio of risks, that are divided into reliability classes

    Intermediate Tail Dependence: A Review and Some New Results

    Full text link
    The concept of intermediate tail dependence is useful if one wants to quantify the degree of positive dependence in the tails when there is no strong evidence of presence of the usual tail dependence. We first review existing studies on intermediate tail dependence, and then we report new results to supplement the review. Intermediate tail dependence for elliptical, extreme value and Archimedean copulas are reviewed and further studied, respectively. For Archimedean copulas, we not only consider the frailty model but also the recently studied scale mixture model; for the latter, conditions leading to upper intermediate tail dependence are presented, and it provides a useful way to simulate copulas with desirable intermediate tail dependence structures.Comment: 25 pages, 1 figur

    Implications of Pseudospin Symmetry on Relativistic Magnetic Properties and Gamow - Teller Transitions in Nuclei

    Get PDF
    Recently it has been shown that pseudospin symmetry has its origins in a relativistic symmetry of the Dirac Hamiltonian. Using this symmetry we relate single - nucleon relativistic magnetic moments of states in a pseudospin doublet to the relativistic magnetic dipole transitions between the states in the doublet, and we relate single - nucleon relativistic Gamow - Teller transitions within states in the doublet. We apply these relationships to the Gamow - Teller transitions from 39Ca^{39}Ca to its mirror nucleus 39K^{39}K.Comment: 17 pages, 2 figures, to be published in PRC. Slightly revised text with one reference adde

    Lectin-Based Food Poisoning: A New Mechanism of Protein Toxicity

    Get PDF
    BACKGROUND: Ingestion of the lectins present in certain improperly cooked vegetables can result in acute GI tract distress, but the mechanism of toxicity is unknown. In vivo, gut epithelial cells are constantly exposed to mechanical and other stresses and consequently individual cells frequently experience plasma membrane disruptions. Repair of these cell surface disruptions allows the wounded cell to survive: failure results in necrotic cell death. Plasma membrane repair is mediated, in part, by an exocytotic event that adds a patch of internal membrane to the defect site. Lectins are known to inhibit exocytosis. We therefore tested the novel hypothesis that lectin toxicity is due to an inhibitory effect on plasma membrane repair. METHODS AND FINDINGS: Repair of plasma membrane disruptions and exocytosis of mucus was assessed after treatment of cultured cell models and excised segments of the GI tract with lectins. Plasma membrane disruptions were produced by focal irradiation of individual cells, using a microscope-based laser, or by mechanical abrasion of multiple cells, using a syringe needle. Repair was then assessed by monitoring the cytosolic penetration of dyes incapable of crossing the intact plasma membrane. We found that cell surface-bound lectins potently inhibited plasma membrane repair, and the exocytosis of mucus that normally accompanies the repair response. CONCLUSIONS: Lectins potently inhibit plasma membrane repair, and hence are toxic to wounded cells. This represents a novel form of protein-based toxicity, one that, we propose, is the basis of plant lectin food poisoning

    The Intermediate Filament Cytoskeleton of Macrophages

    Get PDF
    This study characterizes two-and three-dimensional ultrastructure and surface topography of polymerized networks of intermediate filaments (IF) isolated from mouse peritoneal macrophages. Isolated IF bound to monoclonal anti-IF antibodies in enzyme-linked immunosorbent assays. Immunogold labeling of IF with specific antibodies revealed that epitopes are distributed along filaments particularly at junctions where filaments interconnect. Networks of IF, viewed by scanning electron microscopy, organized as ropelike groups of interconnecting filaments which swirl and encircle each other to form three-dimensional lattices containing ellipsoidal-, circular-, and vacuole-shaped cavities. Cavity diameters were similar in size to organelles and vacuoles; diameters were grouped as small (12-288 nm), medium (0.3-1.7 ÎĽm), and large (2-3 ÎĽm). The walls of the cavities appeared as beaded structures with alternating globular and linear regions. Linear regions were 14 nm. Repeat distances taken from the central axis of globular regions were 23-27 nm. The lattice organization of IF observed in vitro was similar to images seen in vivo in Triton-insoluble cytoskeletons immunofluorescently labeled with specific antibodies. In whole cells processed for TEM, swirling bundles of IF were found encircling membranous vacuoles. Based on the lattice architecture of IF, cavity dimensions, and IF location, we postulate that intermediate filaments may function in the mechanical and spatial distribution of vacuoles in the cell cytoplasm
    • …
    corecore