8,357 research outputs found

    Hysteresis and Post Walrasian Economics

    Get PDF
    Macroeconomics, hysteresis The “new consensus” dsge (dynamic stochastic general equilibrium) macroeconomic model has microfoundations provided by a single representative agent. In this model shocks to the economic environment do not have any lasting effects. In reality adjustments at the micro level are made by heterogeneous agents, and the aggregation problem cannot be assumed away. In this paper we show that the discontinuous adjustments made by heterogeneous agents at the micro level mean that shocks have lasting effects, aggregate variables containing a selective, erasable memory of the shocks experienced. This hysteresis framework provides foundations for the post-Walrasian analysis of macroeconomic systems

    Chandra Observation of the Radio Source / X-ray Gas Interaction in the Cooling Flow Cluster Abell 2052

    Get PDF
    We present a Chandra observation of Abell 2052, a cooling flow cluster with a central cD that hosts the complex radio source 3C 317. The data reveal ``holes'' in the X-ray emission that are coincident with the radio lobes. The holes are surrounded by bright ``shells'' of X-ray emission. The data are consistent with the radio source displacing and compressing, and at the same time being confined by, the X-ray gas. The compression of the X-ray shells appears to have been relatively gentle and, at most, slightly transonic. The pressure in the X-ray gas (the shells and surrounding cooler gas) is approximately an order of magnitude higher than the minimum pressure derived for the radio source, suggesting that an additional source of pressure is needed to support the radio plasma. The compression of the X-ray shells has speeded up the cooling of the shells, and optical emission line filaments are found coincident with the brightest regions of the shells.Comment: accepted for publication in ApJ Letters; for high-resolution color figures, see http://www.astro.virginia.edu/~elb6n/abell2052.htm

    Homogeneous cooling of rough, dissipative particles: Theory and simulations

    Get PDF
    We investigate freely cooling systems of rough spheres in two and three dimensions. Simulations using an event driven algorithm are compared with results of an approximate kinetic theory, based on the assumption of a generalized homogeneous cooling state. For short times tt, translational and rotational energy are found to change linearly with tt. For large times both energies decay like t2t^{-2} with a ratio independent of time, but not corresponding to equipartition. Good agreement is found between theory and simulations, as long as no clustering instability is observed. System parameters, i.e. density, particle size, and particle mass can be absorbed in a rescaled time, so that the decay of translational and rotational energy is solely determined by normal restitution and surface roughness.Comment: 10 pages, 10 eps-figure

    X-ray Polarization Signatures of Compton Scattering in Magnetic Cataclysmic Variables

    Full text link
    Compton scattering within the accretion column of magnetic cataclysmic variables (mCVs) can induce a net polarization in the X-ray emission. We investigate this process using Monte Carlo simulations and find that significant polarization can arise as a result of the stratified flow structure in the shock-ionized column. We find that the degree of linear polarization can reach levels up to ~8% for systems with high accretion rates and low white-dwarf masses, when viewed at large inclination angles with respect to the accretion column axis. These levels are substantially higher than previously predicted estimates using an accretion column model with uniform density and temperature. We also find that for systems with a relatively low-mass white dwarf accreting at a high accretion rate, the polarization properties may be insensitive to the magnetic field, since most of the scattering occurs at the base of the accretion column where the density structure is determined mainly by bremsstrahlung cooling instead of cyclotron cooling.Comment: 7 pages, 8 figures, accepted by MNRA

    Prepayment medical-care plans for low-income farmers in Ohio

    Get PDF

    The Detectability of AGN Cavities in Cooling-Flow Clusters

    Full text link
    Chandra X-ray Observatory has revealed X-ray cavities in many nearby cooling flow clusters. The cavities trace feedback from the central active galactic nulceus (AGN) on the intracluster medium (ICM), an important ingredient in stabilizing cooling flows and in the process of galaxy formation and evolution. But, the prevalence and duty cycle of such AGN outbursts is not well understood. To this end, we study how the cooling is balanced by the cavity heating for a complete sample of clusters (the Brightest 55 clusters of galaxies, hereafter B55). In the B55, we found 33 cooling flow clusters, 20 of which have detected X-ray bubbles in their ICM. Among the remaining 13, all except Ophiuchus could have significant cavity power yet remain undetected in existing images. This implies that the duty cycle of AGN outbursts with significant heating potential in cooling flow clusters is at least 60 % and could approach 100 %, but deeper data is required to constrain this further.Comment: 4 pages, 2 figures; to appear in the proceedings of "The Monsters' Fiery Breath", Madison, Wisconsin 1-5 June 2009, Eds. Sebastian Heinz & Eric Wilcots; added annotation to the figur

    Jet Interactions with the Hot Halos of Clusters and Galaxies

    Get PDF
    X-ray observations of cavities and shock fronts produced by jets streaming through hot halos have significantly advanced our understanding of the energetics and dynamics of extragalactic radio sources. Radio sources at the centers of clusters have dynamical ages between ten and several hundred million years. They liberate between 1E58-1E62 erg per outburst, which is enough energy to regulate cooling of hot halos from galaxies to the richest clusters. Jet power scales approximately with the radio synchrotron luminosity to the one half power. However, the synchrotron efficiency varies widely from nearly unity to one part in 10,000, such that relatively feeble radio source can have quasar-like mechanical power. The synchrotron ages of cluster radio sources are decoupled from their dynamical ages, which tend to be factors of several to orders of magnitude older. Magnetic fields and particles in the lobes tend to be out of equipartition. The lobes may be maintained by heavy particles (e.g., protons), low energy electrons, a hot, diffuse thermal gas, or possibly magnetic (Poynting) stresses. Sensitive X-ray images of shock fronts and cavities can be used to study the dynamics of extragalactic radio sources.Comment: 10 pages, 3 figures, invited review, "Extragalactic Jets: Theory and Observation from Radio to Gamma Ray, held in Girdwood, Alaska, U.S.A. 21-24 May, 2007, minor text changes; one added referenc

    Bifurcation Diagram for Compartmentalized Granular Gases

    Get PDF
    The bifurcation diagram for a vibro-fluidized granular gas in N connected compartments is constructed and discussed. At vigorous driving, the uniform distribution (in which the gas is equi-partitioned over the compartments) is stable. But when the driving intensity is decreased this uniform distribution becomes unstable and gives way to a clustered state. For the simplest case, N=2, this transition takes place via a pitchfork bifurcation but for all N>2 the transition involves saddle-node bifurcations. The associated hysteresis becomes more and more pronounced for growing N. In the bifurcation diagram, apart from the uniform and the one-peaked distributions, also a number of multi-peaked solutions occur. These are transient states. Their physical relevance is discussed in the context of a stability analysis.Comment: Phys. Rev. E, in press. Figure quality has been reduced in order to decrease file-siz

    A Deep Chandra Observation of the AGN Outburst and Merger in Hickson Compact Group 62

    Get PDF
    We report on an analysis of new Chandra data of the galaxy group HCG 62, well known for possessing cavities in its intragroup medium (IGM) that were inflated by the radio lobes of its central active galactic nucleus (AGN). With the new data, a factor of three deeper than previous Chandra data, we re-examine the energetics of the cavities and determine new constraints on their contents. We confirm that the ratio of radiative to mechanical power of the AGN outburst that created the cavities is less than 10^-4, among the lowest of any known cavity system, implying that the relativistic electrons in the lobes can supply only a tiny fraction of the pressure required to support the cavities. This finding implies additional pressure support in the lobes from heavy particles (e.g., protons) or thermal gas. Using spectral fits to emission in the cavities, we constrain any such volume-filling thermal gas to have a temperature kT > 4.3 keV. For the first time, we detect X-ray emission from the central AGN, with a luminosity of L(2-10 keV) = (1.1 +/- 0.4) x 10^39 erg s^-1 and properties typical of a low-luminosity AGN. Lastly, we report evidence for a recent merger from the surface brightness, temperature, and metallicity structure of the IGM.Comment: Accepted to MNRAS, 14 pages, 9 figure

    Relation between Stochastic Resonance and Synchronization of Passages in a Double-Well System

    Full text link
    We calculate, numerically, the residence times (and their distribution) of a Brownian particle in a two-well system under the action of a periodic, saw-tooth type, external field. We define hysteresis in the system. The hysteresis loop area is shown to be a good measure of synchronization of passages from one well to the other. We establish connection between this stochastic synchronization and stochastic resonance in the system.Comment: To appear in PRE May 1997, figures available on reques
    corecore