955 research outputs found

    Velocity Correlations in Driven Two-Dimensional Granular Media

    Full text link
    Simulations of volumetrically forced granular media in two dimensions produce s tates with nearly homogeneous density. In these states, long-range velocity correlations with a characteristic vortex structure develop; given sufficient time, the correlations fill the entire simulated area. These velocity correlations reduce the rate and violence of collisions, so that pressure is smaller for driven inelastic particles than for undriven elastic particles in the same thermodynamic state. As the simulation box size increases, the effects of veloc ity correlations on the pressure are enhanced rather than reduced.Comment: 12 pages, 6 figures, 21 reference

    Birth data accessibility via primary care health records to classify health status in a multi-ethnic population of children: an observational study

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/license/by/4.0

    Birthweight and risk markers for type 2 diabetes and cardiovascular disease in childhood: the Child Heart and Health Study in England (CHASE).

    Get PDF
    AIMS/HYPOTHESIS: Lower birthweight (a marker of fetal undernutrition) is associated with higher risks of type 2 diabetes and cardiovascular disease (CVD) and could explain ethnic differences in these diseases. We examined associations between birthweight and risk markers for diabetes and CVD in UK-resident white European, South Asian and black African-Caribbean children. METHODS: In a cross-sectional study of risk markers for diabetes and CVD in 9- to 10-year-old children of different ethnic origins, birthweight was obtained from health records and/or parental recall. Associations between birthweight and risk markers were estimated using multilevel linear regression to account for clustering in children from the same school. RESULTS: Key data were available for 3,744 (66%) singleton study participants. In analyses adjusted for age, sex and ethnicity, birthweight was inversely associated with serum urate and positively associated with systolic BP. After additional height adjustment, lower birthweight (per 100 g) was associated with higher serum urate (0.52%; 95% CI 0.38, 0.66), fasting serum insulin (0.41%; 95% CI 0.08, 0.74), HbA1c (0.04%; 95% CI 0.00, 0.08), plasma glucose (0.06%; 95% CI 0.02, 0.10) and serum triacylglycerol (0.30%; 95% CI 0.09, 0.51) but not with BP or blood cholesterol. Birthweight was lower among children of South Asian (231 g lower; 95% CI 183, 280) and black African-Caribbean origin (81 g lower; 95% CI 30, 132). However, adjustment for birthweight had no effect on ethnic differences in risk markers. CONCLUSIONS/INTERPRETATION: Birthweight was inversely associated with urate and with insulin and glycaemia after adjustment for current height. Lower birthweight does not appear to explain emerging ethnic difference in risk markers for diabetes

    Symptomatic venous thromboembolism following a hip fracture: Incidence and risk factors in 5,300 patients

    Get PDF
    Background and purpose Venous thromboembolism (VTE) remains a substantial cause of morbidity and mortality following hip fracture. Previous work has not identified any risk factors associated with the type of hip fracture. We report the incidence of and risk factors for development of symptomatic VTE in patients following a hip fracture

    Lattice Boltzmann simulations of soft matter systems

    Full text link
    This article concerns numerical simulations of the dynamics of particles immersed in a continuum solvent. As prototypical systems, we consider colloidal dispersions of spherical particles and solutions of uncharged polymers. After a brief explanation of the concept of hydrodynamic interactions, we give a general overview over the various simulation methods that have been developed to cope with the resulting computational problems. We then focus on the approach we have developed, which couples a system of particles to a lattice Boltzmann model representing the solvent degrees of freedom. The standard D3Q19 lattice Boltzmann model is derived and explained in depth, followed by a detailed discussion of complementary methods for the coupling of solvent and solute. Colloidal dispersions are best described in terms of extended particles with appropriate boundary conditions at the surfaces, while particles with internal degrees of freedom are easier to simulate as an arrangement of mass points with frictional coupling to the solvent. In both cases, particular care has been taken to simulate thermal fluctuations in a consistent way. The usefulness of this methodology is illustrated by studies from our own research, where the dynamics of colloidal and polymeric systems has been investigated in both equilibrium and nonequilibrium situations.Comment: Review article, submitted to Advances in Polymer Science. 16 figures, 76 page

    Cold gas accretion in galaxies

    Get PDF
    Evidence for the accretion of cold gas in galaxies has been rapidly accumulating in the past years. HI observations of galaxies and their environment have brought to light new facts and phenomena which are evidence of ongoing or recent accretion: 1) A large number of galaxies are accompanied by gas-rich dwarfs or are surrounded by HI cloud complexes, tails and filaments. It may be regarded as direct evidence of cold gas accretion in the local universe. It is probably the same kind of phenomenon of material infall as the stellar streams observed in the halos of our galaxy and M31. 2) Considerable amounts of extra-planar HI have been found in nearby spiral galaxies. While a large fraction of this gas is produced by galactic fountains, it is likely that a part of it is of extragalactic origin. 3) Spirals are known to have extended and warped outer layers of HI. It is not clear how these have formed, and how and for how long the warps can be sustained. Gas infall has been proposed as the origin. 4) The majority of galactic disks are lopsided in their morphology as well as in their kinematics. Also here recent accretion has been advocated as a possible cause. In our view, accretion takes place both through the arrival and merging of gas-rich satellites and through gas infall from the intergalactic medium (IGM). The infall may have observable effects on the disk such as bursts of star formation and lopsidedness. We infer a mean ``visible'' accretion rate of cold gas in galaxies of at least 0.2 Msol/yr. In order to reach the accretion rates needed to sustain the observed star formation (~1 Msol/yr), additional infall of large amounts of gas from the IGM seems to be required.Comment: To appear in Astronomy & Astrophysics Reviews. 34 pages. Full-resolution version available at http://www.astron.nl/~oosterlo/accretionRevie

    Diabetes in pregnancy among indigenous women in Australia, Canada, New Zealand, and the United States: a method for systematic review of studies with different designs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Diabetes in pregnancy, which includes gestational diabetes mellitus (GDM) and type 2 diabetes mellitus (T2DM), is associated with poor outcomes for both mother and infant during pregnancy, at birth and in the longer term. Recent international guidelines recommend changes to the current GDM screening criteria. While some controversy remains, there appears to be consensus that women at high risk of T2DM, including indigenous women, should be offered screening for GDM early in pregnancy, rather than waiting until 24-28 weeks as is current practice. A range of criteria should be considered before changing screening practice in a population sub-group, including: prevalence, current practice, acceptability and whether adequate treatment pathways and follow-up systems are available. There are also specific issues related to screening in pregnancy and indigenous populations. The evidence that these criteria are met for indigenous populations is yet to be reported. A range of study designs can be considered to generate relevant evidence for these issues, including epidemiological, observational, qualitative, and intervention studies, which are not usually included within a single systematic review. The aim of this paper is to describe the methods we used to systematically review studies of different designs and present the evidence in a pragmatic format for policy discussion.</p> <p>Methods/Design</p> <p>The inclusion criteria will be broad to ensure inclusion of the critical perspectives of indigenous women. Abstracts of the search results will be reviewed by two persons; the full texts of all potentially eligible papers will be reviewed by one person, and 10% will be checked by a second person for validation. Data extraction will be standardised, using existing tools to identify risks for bias in intervention, measurement, qualitative studies and reviews; and adapting criteria for appraising risk for bias in descriptive studies. External validity (generalisability) will also be appraised. The main findings will be synthesised according to the criteria for population-based screening and summarised in an adapted "GRADE" tool.</p> <p>Discussion</p> <p>This will be the first systematic review of all the published literature on diabetes in pregnancy among indigenous women. The method provides a pragmatic approach for synthesizing relevant evidence from a range of study designs to inform the current policy discussion.</p

    Clusters of galaxies : observational properties of the diffuse radio emission

    Get PDF
    Clusters of galaxies, as the largest virialized systems in the Universe, are ideal laboratories to study the formation and evolution of cosmic structures...(abridged)... Most of the detailed knowledge of galaxy clusters has been obtained in recent years from the study of ICM through X-ray Astronomy. At the same time, radio observations have proved that the ICM is mixed with non-thermal components, i.e. highly relativistic particles and large-scale magnetic fields, detected through their synchrotron emission. The knowledge of the properties of these non-thermal ICM components has increased significantly, owing to sensitive radio images and to the development of theoretical models. Diffuse synchrotron radio emission in the central and peripheral cluster regions has been found in many clusters. Moreover large-scale magnetic fields appear to be present in all galaxy clusters, as derived from Rotation Measure (RM) studies. Non-thermal components are linked to the cluster X-ray properties, and to the cluster evolutionary stage, and are crucial for a comprehensive physical description of the intracluster medium. They play an important role in the cluster formation and evolution. We review here the observational properties of diffuse non-thermal sources detected in galaxy clusters: halos, relics and mini-halos. We discuss their classification and properties. We report published results up to date and obtain and discuss statistical properties. We present the properties of large-scale magnetic fields in clusters and in even larger structures: filaments connecting galaxy clusters. We summarize the current models of the origin of these cluster components, and outline the improvements that are expected in this area from future developments thanks to the new generation of radio telescopes.Comment: Accepted for the publication in The Astronomy and Astrophysics Review. 58 pages, 26 figure
    corecore