131 research outputs found

    Combined experimental and computational investigations of rhodium-catalysed C-H functionalisation of pyrazoles with alkenes

    Get PDF
    Detailed experimental and computational studies have been carried out on the oxidative coupling of the alkenes C(2)H(3)Y (Y=CO(2)Me (a), Ph (b), C(O)Me (c)) with 3-aryl-5-R-pyrazoles (R=Me (1 a), Ph (1 b), CF(3) (1 c)) using a [Rh(MeCN)(3)Cp*][PF(6)](2)/Cu(OAc)(2)⋅H(2)O catalyst system. In the reaction of methyl acrylate with 1 a, up to five products (2 aa–6 aa) were formed, including the trans monovinyl product, either complexed within a novel Cu(I) dimer (2 aa) or as the free species (3 aa), and a divinyl species (6 aa); both 3 aa and 6 aa underwent cyclisation by an aza-Michael reaction to give fused heterocycles 4 aa and 5 aa, respectively. With styrene, only trans mono- and divinylation products were observed, whereas with methyl vinyl ketone, a stronger Michael acceptor, only cyclised oxidative coupling products were formed. Density functional theory calculations were performed to characterise the different migratory insertion and ÎČ-H transfer steps implicated in the reactions of 1 a with methyl acrylate and styrene. The calculations showed a clear kinetic preference for 2,1-insertion and the formation of trans vinyl products, consistent with the experimental results

    Understanding electronic effects on carboxylate-assisted C-H activation at ruthenium:the importance of kinetic and thermodynamic control

    Get PDF
    Meta-and para-substituted 1-phenylpyrazoles (R-phpyz-H) react with [RuCl2(p-cymene)]2 in the presence of NaOAc to form cyclometallated complexes [M(R-phpyz)Cl(p-cymene)] (where R = NMe2, OMe, Me, H, F, CF3 and NO2). Experimental and DFT studies indicate that product formation can be reversible or irreversible depending on the substituents and the reaction conditions. Competition experiments show that the kinetic selectivity favours electron-donating substituents and correlate well with the Hammett parameter, giving a negative slope (ρ =-2.4) that is consistent with a cationic transition state. However, surprisingly, the thermodynamic selectivity is completely opposite, with substrates featuring electron-withdrawing groups being favoured. These trends are reproduced with DFT calculations that locate a rate-limiting transition state dominated by Ru-O bond dissociation and minimal C-H bond elongation. Detailed computational analysis of these transition states shows that C-H activation proceeds by an AMLA/CMD mechanism through a synergic combination of a C-H→Ru agostic interaction and C-H⋯O H-bonding. NBO calculations also highlight a syndetic bonding term, and the relative weights of these three components vary in a complementary fashion depending on the nature of the substituent. With meta-substituted ligands H/D exchange experiments signal kinetically accessible ortho-C-H activation when R = NMe2, OMe and Me. This is also modelled computationally and the calculations highlight the kinetic relevance of the HOAc/Cl exchange that occurs post C-H bond cleavage, in particular with the bulkier NMe2 and Me substituents. Our study highlights that the experimental substituent effects are dependent on the reaction conditions and so using such studies to assign the mechanism of C-H activation in either stoichiometric or catalytic reactions may be misleading.</p

    Easy access to nucleophilic boron through diborane to magnesium boryl metathesis

    Get PDF
    Organoboranes are some of the most synthetically valuable and widely used intermediates in organic and pharmaceutical chemistry. Their synthesis, however, is limited by the behaviour of common boron starting materials as archetypal Lewis acids such that common routes to organoboranes rely on the reactivity of boron as an electrophile. While the realization of convenient sources of nucleophilic boryl anions would open up a wealth of opportunity for the development of new routes to organoboranes, the synthesis of current candidates is generally limited by a need for highly reducing reaction conditions. Here, we report a simple synthesis of a magnesium boryl through the heterolytic activation of the B–B bond of bis(pinacolato)diboron, which is achieved by treatment of an easily generated magnesium diboranate complex with 4-dimethylaminopyridine. The magnesium boryl is shown to act as an unambiguous nucleophile through its reactions with iodomethane, benzophenone and N,Nâ€Č-di-isopropyl carbodiimide and by density functional theory

    Mixing and matching N, N - and N, O -chelates in anionic Mg( i ) compounds: synthesis and reactivity with RN 00000000 00000000 00000000 00000000 11111111 00000000 11111111 00000000 00000000 00000000 C NR and CO †

    Get PDF
    Reduction of [Mg(NON)]2 ([NON]2− = [O(SiMe2NDipp)2]2−, Dipp = 2,6-iPr2C6H3) affords Mg(i) species containing NON- and NNO-ligands ([NNO]2− = [N(Dipp)SiMe2N(Dipp)SiMe2O]2−). The products of reactions with iPrNCNiPr and CO are consistent with the presence of reducing Mg(i) centres. Extraction with THF affords [K(THF)2]2[(NNO)Mg–Mg(NNO)] with a structurally characterised Mg–Mg bond that was examined using density functional theory

    Remote C6-Selective Ruthenium-Catalyzed C-H Alkylation of Indole Derivatives via σ-Activation

    Get PDF
    The site-selective functionalization of an indole template offers exciting possibilities for the derivatization of molecules with useful biological properties. Herein, we report the remote C6-selective C–H alkylation of indole derivatives enabled by dual cyclometalation/redox ruthenium catalysis. Remote alkylation was achieved using <i>N</i>-pyrimidinyl indoles with an ancillary ester directing group at the C3 position. This ancillary directing group proved pivotal to reactivity at C6, with yields up to 92% achieved. A one-pot procedure to install this directing group followed by remote C6 functionalization has also been reported; both processes are shown to proceed via ruthenium redox catalysis. Computationally calculated Fukui indices elucidated that the C6 position was the most reactive vacant C–H site toward potential functionalization. When this investigation was coupled with deuterium incorporation studies, a C2-cyclometalation/remote σ-activation pathway was deduced

    ĆœELJKO HOLJEVAC GOSPIĆ U VOJNOJ KRAJINI

    Get PDF
    A range of novel heterocyclic cations have been synthesized by the Rh­(III)-catalyzed oxidative C–N and C–C coupling of 1-phenylpyrazole, 2-phenylpyridine, and 2-vinylpyridine with alkynes (4-octyne and diphenylacetylene). The reactions proceed via initial C–H activation, alkyne insertion, and reductive coupling, and all three of these steps are sensitive to the substrates involved and the reaction conditions. Density functional theory (DFT) calculations show that C–H activation can proceed via a heteroatom-directed process that involves displacement of acetate by the neutral substrate to form charged intermediates. This step (which leads to cationic C–N coupled products) is therefore favored by more polar solvents. An alternative non-directed C–H activation is also possible that does not involve acetate displacement and so becomes favored in low polarity solvents, leading to C–C coupled products. Alkyne insertion is generally more favorable for diphenylacetylene over 4-octyne, but the reverse is true of the reductive coupling step. The diphenylacetylene moiety can also stabilize unsaturated seven-membered rhodacycle intermediates through extra interaction with one of the Ph substituents. With 1-phenylpyrazole this effect is sufficient to suppress the final C–N reductive coupling. A comparison of a series of seven-membered rhodacycles indicates the barrier to coupling is highly sensitive to the two groups involved and follows the trend C–N<sup>+</sup> > C–N > C–C (i.e., involving the formation of cationic C–N, neutral C–N, and neutral C–C coupled products, respectively)

    [{SiNDipp}MgNa]2: A potent molecular reducing agent

    Get PDF
    The bimetallic species, [{SiNDipp}MgNa]2 [{SiNDipp} = {CH2SiMe2N(Dipp)}2; (Dipp = 2,6-i-Pr2C6H3)], is shown to be a potent reducing agent, able to effect one- or two-electron reduction of either dioxygen, TEMPO, anthracene, benzophenone, or diphenylacetylene. In most cases, the bimetallic reaction products imply that the dissimilar alkaline metal centers react with a level of cooperativity. EPR analysis of the benzophenone-derived reaction and the concurrent isolation of [{SiNDipp}Mg(OCPh2)2], however, illustrate that treatment with such reducible, but O-basic, species can also result in reactivity in which the metals provide independent reaction products. The notable E-stereochemistry of the diphenylacetylene reduction product prompted a computational investigation of the PhC≡CPh addition. This analysis invokes a series of elementary steps that necessitate ring-opening via Mg+ → Na+ amido group migration of the SiNDipp ligand, providing insight into the previously observed lability of the bidentate dianion and its consequent proclivity toward macrocyclization

    Azulene-Derived Fluorescent Probe for Bioimaging:Detection of Reactive Oxygen and Nitrogen Species by Two-Photon Microscopy

    Get PDF
    Two-photon fluorescence microscopy has become an indispensable technique for cellular imaging. Whereas most two-photon fluorescent probes rely on well-known fluorophores, here we report a new fluorophore for bioimaging, namely azulene. A chemodosimeter, comprising a boronate ester receptor motif conjugated to an appropriately substituted azulene, is shown to be an effective two-photon fluorescent probe for reactive oxygen species, showing good cell penetration, high selectivity for peroxynitrite, no cytotoxicity, and excellent photostability.This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie SkƂodowska-Curie grant agreement No 665992 </p
    • 

    corecore