52 research outputs found

    Cancer, Carcinogens and Screening in the Kidney

    Get PDF
    This chapter examines a number of different aspects of renal cancer. Firstly, an introduction into the numerous forms of renal cancers is provided, focusing on renal cell carcinomas their causes and the different treatment options currently available. This chapter also takes a look at renal cancer from a toxicological point of view. Due to the crucial role of the kidneys in blood filtration, this allows them to become susceptible to the exposure and accumulation of potentially carcinogenic chemicals. For this reason, renal carcinogens are looked at in detail focusing on the varying mechanisms of genotoxic renal carcinogens such as aristolochic acid and potassium bromate, and their non-genotoxic renal carcinogens counterparts including ochratoxin A and chlorothalonil. This chapter also examines the different methods currently used to detect a compound’s carcinogenic potential, including the in vitro Ames test and animal based carcinogenicity screening methods

    Sirolimus Enhances Cyclosporine A-Induced Cytotoxicity in Human Renal Glomerular Mesangial Cells

    Get PDF
    End Stage Renal Disease (ESRD) is an ever increasing problem worldwide. However the mechanisms underlying disease progression are not fully elucidated. This work addressed nephrotoxicity induced by the immunosuppressive agents' cyclosporine A (CsA) and sirolimus (SRL). Nephrotoxicity is the major limiting factor in long term use of CsA. SRL causes less nephrotoxicity than CsA. Therefore investigations into the differential effects of these agents may identify potential mechanisms of nephrotoxicity and means to prevent ESRD induced by therapeutic drugs. Using ELISA, Western blotting, quantitative PCR and a reporter gene assay we detailed the differential effects of CsA and SRL in human renal mesangial cells. CsA treatment increased profibrotic TGF-β1 secretion in human mesangial cells whereas SRL did not, indicating a role for TGF-β in CsA toxicity. However we observed a synergistic nephrotoxic effect when CsA and SRL were co-administered. These synergistic alterations may have been due to an increase in CTGF which was not evident when the immunosuppressive drugs were used alone. The CsA/SRL combination therapy significantly enhanced Smad signalling and altered the extracellular matrix regulator matrix metalloproteinase 9 (MMP-9). Inhibition of the ERK 1/2 pathway, attenuated these CsA/SRL induced alterations indicating a potentially significant role for this pathway

    The Role of MAPK in Drug-Induced Kidney Injury

    Get PDF
    This paper focuses on the role that mitogen-activated protein kinases (MAPKs) play in drug-induced kidney injury. The MAPKs, of which there are four major classes (ERK, p38, JNK, and ERK5/BMK), are signalling cascades which have been found to be broadly conserved across a wide variety of organisms. MAPKs allow effective transmission of information from the cell surface to the cytosolic or nuclear compartments. Cross talk between the MAPKs themselves and with other signalling pathways allows the cell to modulate responses to a wide variety of external stimuli. The MAPKs have been shown to play key roles in both mediating and ameliorating cellular responses to stress including xenobiotic-induced toxicity. Therefore, this paper will discuss the specific role of the MAPKs in the kidney in response to injury by a variety of xenobiotics and the potential for therapeutic intervention at the level of MAPK signalling across different types of kidney disease

    Public Response to Cost-Quality Tradeoffs in Clinical Decisions.

    Get PDF
    PURPOSE: To explore public attitudes toward the incorporation of cost-effectiveness analysis into clinical decisions. METHODS: The authors presented 781 jurors with a survey describing 1 of 6 clinical encounters in which a physician has to choose between cancer screening tests. They provided cost-effectiveness data for all tests, and in each scenario, the most effective test was more expensive. They instructed respondents to imagine that he or she was the physician in the scenario and asked them to choose which test to recommend and then explain their choice in an open-ended manner. The authors then qualitatively analyzed the responses by identifying themes and developed a coding scheme. Two authors separately coded the statements with high overall agreement (kappa = 0.76). Categories were not mutually exclusive. RESULTS: Overall, 410 respondents (55%) chose the most expensive option, and 332 respondents (45%) choose a less expensive option. Explanatory comments were given by 82% respondents. Respondents who chose the most expensive test focused on the increased benefit (without directly acknowledging the additional cost) (39%), a general belief that life is more important than money (22%), the significance of cancer risk for the patient in the scenario (20%), the belief that the benefit of the test was worth the additional cost (8%), and personal anecdotes/preferences (6%). Of the respondents who chose the less expensive test, 40% indicated that they did not believe that the patient in the scenario was at significant risk for cancer, 13% indicated that they thought the less expensive test was adequate or not meaningfully different from the more expensive test, 12% thought the cost of the test was not worth the additional benefit, 9% indicated that the test was too expensive (without mention of additional benefit), and 7% responded that resources were limited. CONCLUSIONS: Public response to cost-quality tradeoffs is mixed. Although some respondents justified their decision based on the cost-effectiveness information provided, many focused instead on specific features of the scenario or on general beliefs about whether cost should be incorporated into clinical decisions

    Identification of the multifaceted chemopreventive activity of curcumin against the carcinogenic potential of the food additive, KBrO3

    Get PDF
    Background: Potassium bromate (KBrO3), a food additive, has been used in many bakery products as an oxidizing agent. It has been shown to induce renal cancer in many in-vitro and in-vivo experimental models Objectives: This study evaluated the carcinogenic potential of potassium bromate (KBrO3) and the chemopreventive mechanisms of the anti-oxidant and anti-inflammatory phytochemical, curcumin against KBrO3-induced carcinogenicity Method: Lactate dehydrogenase (LDH) cytotoxicity assay and morphological characteristics were used to assess curcumin's cytoprotective potential against KBrO3 toxicity. To assess the chemopreventive potential of curcumin against KBrO3-induced oxidative insult, intracellular H2O2 and the nuclear concentration of the DNA adduct 8-OHdG were measured. PCR array, qRT-PCR, and western blot analysis were used to identify dysregulated genes by KBrO3 exposure. Furthermore, immunofluorescence was used to evaluate the ciliary loss and the disturbance of cellular tight junction induced by KBrO3. Results: Oxidative stress assays showed that KBrO3 increased the levels of intracellular H2O2 and the DNA adduct 8-OHdG. Combination of curcumin with KBrO3 efficiently reduced the level of H2O2 and 8-OHdG while up-regulating the expression of catalase. PCR array, qRT-PCR, and western blot analysis revealed that KBrO3 dysregulated multiple genes involved in inflammation, proliferation, and apoptosis, namely CTGF, IL-1, and TRAF3. Moreover, qRT-PCR and immunofluorescence studies showed that KBrO3 negatively affected the tight junctional protein (ZO-1) and induced a degeneration of primary ciliary proteins. The negative impact of KBrO3 on cilia was markedly repressed by curcumin. Conclusion: Curcumin could potentially be used as a protective agent against carcinogenicity of KBrO

    Lack of cardiac differentiation in c-kit-enriched porcine bone marrow and spleen hematopoietic cell cultures using 5-azacytidine

    Get PDF
    The adult spleen is a source of early hematopoietic stem cells (HSC). We therefore studied whether culturing spleen or bone marrow (BM) HSC in medium containing 5-azacytidine could induce a cardiac phenotype. c-kit enrichment and depletion of adult pig spleen and BM mononuclear cells were obtained by magnetic bead separation using biotinylated pig stem cell factor (c-kit ligand). Cells were incubated with 5-azacytidine for 24 h and refreshed with 5-azacytidine-free medium every 48 h. Western blot was used to detect cardiac troponin and myosin heavy chains. Alth

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    The Curcuminoid EF24 in Combination with TRAIL Reduces Human Renal Cancer Cell Migration by Decreasing MMP-2/MMP-9 Activity through a Reduction in H<sub>2</sub>O<sub>2</sub>

    No full text
    Cancer cells present high levels of oxidative stress, and although an increase in reactive oxygen species (ROS), such as H2O2, can lead to apoptosis, it can also induce cell invasion and metastasis. As the increase in ROS can lead to an increase in the expression of MMP-2 and MMP-9, thus causing the degradation of the extracellular matrix, an increase in the ROS H2O2 might have an impact on MMP-2/MMP-9 activity. The natural compound curcumin has shown some anticancer effects, although its bioavailability hinders its therapeutic potential. However, curcumin and its analogues were shown to resensitize kidney cancer cells to TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis. This study shows that the curcuminoid EF24 in combination with TRAIL increases peroxidase activity in the renal adenocarcinoma cell line ACHN, reducing the level of intracellular H2O2 and MMP-2/MMP-9 activity, a mechanism that is also observed after treatment with curcumin and TRAIL

    The Role of Cystinosin in the Intermediary Thiol Metabolism and Redox Homeostasis in Kidney Proximal Tubular Cells

    No full text
    Cystinosin is a lysosomal transmembrane protein which facilitates transport of the disulphide amino acid cystine (CySS) from the lysosomes of the cell. This protein is encoded by the CTNS gene which is defective in the lysosomal storage disorder, cystinosis. Because of the apparent involvement of cystinosin in the intermediary thiol metabolism, its discovery has fuelled investigations into its role in modulating cellular redox homeostasis. The kidney proximal tubular cells (PTCs) have become the focus of various studies on cystinosin since the protein is highly expressed in these cells and kidney proximal tubular transport dysfunction is the foremost clinical manifestation of cystinosis. The lysosomal CySS pool is a major source of cytosolic cysteine (Cys), the limiting amino acid for the synthesis of an important antioxidant glutathione (GSH) via the &#947;-glutamyl cycle. Therefore, loss of cystinosin function is presumed to lead to cytosolic deficit of Cys which may impair GSH synthesis. However, studies using in vitro models lacking cystinosin yielded inconsistent results and failed to establish the mechanistic role of cystinosin in modulating GSH synthesis and redox homeostasis. Because of the complexity of the metabolic micro- and macro-environment in vivo, using in vitro models alone may not be able to capture the complete sequence of biochemical and physiological events that occur as a consequence of loss of cystinosin function. The coexistence of pathways for the overall handling and disposition of GSH, the modulation of CTNS gene by intracellular redox status and the existence of a non-canonical isoform of cystinosin may constitute possible rescue mechanisms in vivo to remediate redox perturbations in renal PTCs. Importantly, the mitochondria seem to play a critical role in orchestrating redox imbalances initiated by cystinosin dysfunction. Non-invasive techniques such as in vivo magnetic resonance imaging with the aid of systems biology approaches may provide invaluable mechanistic insights into the role of cystinosin in the essential intermediary thiol metabolism and in the overall regulation cellular redox homeostasis

    Mechanisms of calcineurin inhibitor nephrotoxicity in chronic allograft injury

    Get PDF
    The first successful transplantation of a human kidney was performed more than 50 years ago by Murray and colleagues in 1954 between identical twins. The success of this transplantation was due to the fact that no significant rejection occurs between genetically identical twins and therefore immunosuppression was not necessary in this particular case (Merrill et al., 1956). However, solid-organ transplantation could not be considered truly successful until the 1970’s after significant technical and pharmacological advances. In particular, the discovery and development of the calcineurin inhibitors (CNIs) has made allograft transplantation routinely successful with greatly reduced risk of acute rejection. In the absence of pharmacological agents to address the primary pathological mechanisms involved, renal transplantation has now been the standard management of end stage renal failure for the past four decades (Wolfe et al., 1999). Short-term renal allograft and allograft recipient survival rates have increased significantly during the last decade largely due to improved patient monitoring. However, allograft half-life beyond 1 year post-transplant remains largely unchanged. While rates of early allograft failure have significantly reduced, late renal allograft dysfunction remains a significant problem in the transplant population (de Fijter). Chronic allograft injury (CAI) is the most prevalent cause of allograft dysfunction in the first decade after transplantation. The term CAI is used to describe deterioration of renal allograft function and structure due to immunological processes (i.e. chronic rejection) and/or a range of simultaneous nonimmunological factors such as CNI-induced nephrotoxicity, hypertension and infection. This chapter will outline the pathophysiology and etiology of CAI and the role that CNI nephrotoxicity plays in this disease process. It will also review experimental studies that have identified important molecular mechanisms involved and discuss strategies utilised to minimise the development and progression of CAI.Science Foundation IrelandHigher Education AuthorityIrish Research Council for Science, Engineering and TechnologyEuropean Research CouncilHealth Research BoardEnterprise Irelandti, ke, ab, de - TS 29.03.1
    corecore