7 research outputs found

    Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity.

    Get PDF
    Global dispersal and increasing frequency of the SARS-CoV-2 spike protein variant D614G are suggestive of a selective advantage but may also be due to a random founder effect. We investigate the hypothesis for positive selection of spike D614G in the United Kingdom using more than 25,000 whole genome SARS-CoV-2 sequences. Despite the availability of a large dataset, well represented by both spike 614 variants, not all approaches showed a conclusive signal of positive selection. Population genetic analysis indicates that 614G increases in frequency relative to 614D in a manner consistent with a selective advantage. We do not find any indication that patients infected with the spike 614G variant have higher COVID-19 mortality or clinical severity, but 614G is associated with higher viral load and younger age of patients. Significant differences in growth and size of 614G phylogenetic clusters indicate a need for continued study of this variant

    Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity

    Get PDF
    Global dispersal and increasing frequency of the SARS-CoV-2 spike protein variant D614G are suggestive of a selective advantage but may also be due to a random founder effect. We investigate the hypothesis for positive selection of spike D614G in the United Kingdom using more than 25,000 whole genome SARS-CoV-2 sequences. Despite the availability of a large dataset, well represented by both spike 614 variants, not all approaches showed a conclusive signal of positive selection. Population genetic analysis indicates that 614G increases in frequency relative to 614D in a manner consistent with a selective advantage. We do not find any indication that patients infected with the spike 614G variant have higher COVID-19 mortality or clinical severity, but 614G is associated with higher viral load and younger age of patients. Significant differences in growth and size of 614G phylogenetic clusters indicate a need for continued study of this variant

    Replication and Long-Term Persistence of Bovine and Human Strains of Mycobacterium avium subsp. paratuberculosis within Acanthamoeba polyphaga

    No full text
    Free-living protists are ubiquitous in the environment and form a potential reservoir for the persistence of animal and human pathogens. Mycobacterium avium subsp. paratuberculosis is the cause of Johne's disease, a systemic infection accompanied by chronic inflammation of the intestine that affects many animals, including primates. Most humans with Crohn's disease are infected with this chronic enteric pathogen. Subclinical infection with M. avium subsp. paratuberculosis is widespread in domestic livestock. Infected animals excrete large numbers of robust organisms into the environment, but little is known about their ability to replicate and persist in protists. In the present study we fed laboratory cultures of Acanthamoeba polyphaga with bovine and human strains of M. avium subsp. paratuberculosis. Real-time PCR showed that the numbers of the pathogens fell over the first 4 to 8 days and recovered by 12 to 16 days. Encystment of the amoebic cultures after 4 weeks resulted in a 2-log reduction in the level of M. avium subsp. paratuberculosis, which returned to the original level by 24 weeks. Extracts of resection samples of human gut from 39 patients undergoing abdominal surgery were fed to cultures of A. polyphaga. M. avium subsp. paratuberculosis detected by nested IS900 PCR with amplicon sequencing and visualized by IS900 in situ hybridization and auramine-rhodamine staining was found in cultures derived from 13 of the patients and was still present in the cultures after almost 4 years of incubation. Control cultures were negative. M. avium subsp. paratuberculosis has the potential for long-term persistence in environmental protists

    Tyre tread pattern noise optimization by a coupled source-human perception model

    No full text
    The current tyre design process uses many experimental evaluations and it may take therefore more than 2 years to develop a tyre. The use of simulation tools improves and speeds up this process. Research has shown that the human perception of tyre tread pattern noise is mainly determined by the noise characteristics: level, tonalness and modulation (also called drumming). In this paper a new source model and human perception model is described. The source modelling approach predicts the correct trends of the three tyre tread pattern noise characteristics. From the noise characteristics dedicated Sound Quality Metrics are defined: for level the Standard Deviation (STD), for tonalness the Order Prominence (OP) and for modulation the Multi- Order Modulation (MOM). Using these Sound Quality Metrics the human perception model is obtained by regression analysis, predicting the human perception of tyre tread pattern noise correctly (R2=0.94). The coupled source - human perception model enables a very fast optimization of a complete tyre tread pattern design to human comfort

    Genomic reconstruction of the SARS-CoV-2 epidemic in England

    Get PDF
    AbstractThe evolution of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus leads to new variants that warrant timely epidemiological characterization. Here we use the dense genomic surveillance data generated by the COVID-19 Genomics UK Consortium to reconstruct the dynamics of 71 different lineages in each of 315 English local authorities between September 2020 and June 2021. This analysis reveals a series of subepidemics that peaked in early autumn 2020, followed by a jump in transmissibility of the B.1.1.7/Alpha lineage. The Alpha variant grew when other lineages declined during the second national lockdown and regionally tiered restrictions between November and December 2020. A third more stringent national lockdown suppressed the Alpha variant and eliminated nearly all other lineages in early 2021. Yet a series of variants (most of which contained the spike E484K mutation) defied these trends and persisted at moderately increasing proportions. However, by accounting for sustained introductions, we found that the transmissibility of these variants is unlikely to have exceeded the transmissibility of the Alpha variant. Finally, B.1.617.2/Delta was repeatedly introduced in England and grew rapidly in early summer 2021, constituting approximately 98% of sampled SARS-CoV-2 genomes on 26 June 2021.</jats:p

    Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity

    Get PDF
    Global dispersal and increasing frequency of the SARS-CoV-2 spike protein variant D614G are suggestive of a selective advantage but may also be due to a random founder effect. We investigate the hypothesis for positive selection of spike D614G in the United Kingdom using more than 25,000 whole genome SARS-CoV-2 sequences. Despite the availability of a large dataset, well represented by both spike 614 variants, not all approaches showed a conclusive signal of positive selection. Population genetic analysis indicates that 614G increases in frequency relative to 614D in a manner consistent with a selective advantage. We do not find any indication that patients infected with the spike 614G variant have higher COVID-19 mortality or clinical severity, but 614G is associated with higher viral load and younger age of patients. Significant differences in growth and size of 614G phylogenetic clusters indicate a need for continued study of this variant
    corecore