5,955 research outputs found
Our History Clips: Collaborating for the Common Good
This case study reveals how middle school social studies teachers within a professional development program are encouraging their students to use multiple disciplinary literacies to create Our History Clips as they also work toward developing a classroom community of engaged student citizens
Structural changes in cartilage and collagen studied by high temperature Raman spectroscopy
Understanding the high temperature behavior of collagen and collagenous tissue is important for surgical procedures and biomaterials processing for the food, pharmaceutical, and cosmetics industries. One primary event for proteins is thermal denaturation that involves unfolding the polypeptide chains while maintaining the primary structure intact. Collagen in the extracellular matrix of cartilage and other connective tissue is a hierarchical material containing bundles of triple-helical fibers associated with water and proteoglycan components. Thermal analysis of dehydrated collagen indicates irreversible denaturation at high temperature between 135°C and 200°C, with another reversible event at ∼60-80°C for hydrated samples. We report high temperature Raman spectra for freeze-dried cartilage samples that show an increase in laser-excited fluorescence interpreted as conformational changes associated with denaturation above 140°C. Spectra for separated collagen and proteoglycan fractions extracted from cartilage indicate the changes are associated with collagen. The Raman data also show appearance of new features indicating peptide bond hydrolysis at high temperature implying that molecular H2O is retained within the freeze-dried tissue. This is confirmed by thermogravimetric analysis that show 5-7 wt% H2O remaining within freeze-dried cartilage that is released progressively upon heating up to 200°C. Spectra obtained after exposure to high temperature and re-hydration following recovery indicate that the capacity of the denatured collagen to re-absorb water is reduced. Our results are important for revealing the presence of bound H2O within the collagen component of connective tissue even after freeze-drying and its role in denaturation that is accompanied by or perhaps preceded by breakdown of the primary polypeptide structure
Automatic Abstraction in SMT-Based Unbounded Software Model Checking
Software model checkers based on under-approximations and SMT solvers are
very successful at verifying safety (i.e. reachability) properties. They
combine two key ideas -- (a) "concreteness": a counterexample in an
under-approximation is a counterexample in the original program as well, and
(b) "generalization": a proof of safety of an under-approximation, produced by
an SMT solver, are generalizable to proofs of safety of the original program.
In this paper, we present a combination of "automatic abstraction" with the
under-approximation-driven framework. We explore two iterative approaches for
obtaining and refining abstractions -- "proof based" and "counterexample based"
-- and show how they can be combined into a unified algorithm. To the best of
our knowledge, this is the first application of Proof-Based Abstraction,
primarily used to verify hardware, to Software Verification. We have
implemented a prototype of the framework using Z3, and evaluate it on many
benchmarks from the Software Verification Competition. We show experimentally
that our combination is quite effective on hard instances.Comment: Extended version of a paper in the proceedings of CAV 201
The Astrophysical Multipurpose Software Environment
We present the open source Astrophysical Multi-purpose Software Environment
(AMUSE, www.amusecode.org), a component library for performing astrophysical
simulations involving different physical domains and scales. It couples
existing codes within a Python framework based on a communication layer using
MPI. The interfaces are standardized for each domain and their implementation
based on MPI guarantees that the whole framework is well-suited for distributed
computation. It includes facilities for unit handling and data storage.
Currently it includes codes for gravitational dynamics, stellar evolution,
hydrodynamics and radiative transfer. Within each domain the interfaces to the
codes are as similar as possible. We describe the design and implementation of
AMUSE, as well as the main components and community codes currently supported
and we discuss the code interactions facilitated by the framework.
Additionally, we demonstrate how AMUSE can be used to resolve complex
astrophysical problems by presenting example applications.Comment: 23 pages, 25 figures, accepted for A&
Rolling moments in a trailing vortex flow field
Pressure distributions are presented which were measured on a wing in close proximity to a tip vortex of known structure generated by a larger, upstream semispan wing. Overall loads calculated by integration of these pressures are checked by independent measurements made with an identical model mounted on a force balance. Several conventional methods of wing analysis are used to predict the loads on the following wing. Strip theory is shown to give uniformly poor results for loading distribution, although predictions of overall lift and rolling moment are sometimes acceptable. Good results are obtained for overall coefficients and loading distribution by using linearized pressures in vortex-lattice theory in conjunction with a rectilinear vortex. The equivalent relation from reverse-flow theory that can be used to give economic predictions for overall loads is presented
Cancer and systemic inflammation: treat the tumour and treat the host
Determinants of cancer progression and survival are multifactorial and host responses are increasingly appreciated to have a major role. Indeed, the development and maintenance of a systemic inflammatory response has been consistently observed to confer poorer outcome, in both early and advanced stage disease. For patients, cancer-associated symptoms are of particular importance resulting in a marked impact on day-to-day quality of life and are also associated with poorer outcome. These symptoms are now recognised to cluster with one another with anorexia, weight loss and physical function forming a recognised cluster whereas fatigue, pain and depression forming another. Importantly, it has become apparent that these symptom clusters are associated with presence of a systemic inflammatory response in the patient with cancer. Given the understanding of the above, there is now a need to intervene to moderate systemic inflammatory responses, where present. In this context the rationale for therapeutic intervention using nonselective anti-inflammatory agents is clear and compelling and likely to become a part of routine clinical practice in the near future. The published literature on therapeutic intervention using anti-inflammatory agents for cancer-associated symptoms was reviewed. There are important parallels with the development of useful treatments for the systemic inflammatory response in patients with rheumatological disease and cardiovascular disease
Optical monitoring of gamma-ray source fields
The three gamma-ray burst source fields GBS1028+46, GBS1205+24, and GBS2252-03 have been monitored for transient optical emission for a combined total of 52 hours. No optical events were seen. The limiting magnitude for the search was M sub V = 15.8 longer and M sub V = 17.0 for 6.0 s or longer
On the Use of Finite-Size Scaling to Measure Spin-Glass Exponents
Finite-size scaling (FSS) is a standard technique for measuring scaling
exponents in spin glasses. Here we present a critique of this approach,
emphasizing the need for all length scales to be large compared to microscopic
scales. In particular we show that the replacement, in FSS analyses, of the
correlation length by its asymptotic scaling form can lead to apparently good
scaling collapses with the wrong values of the scaling exponents.Comment: RevTeX, 5 page
- …