3,969 research outputs found
From Mutation to Disarticulation: Terror and the Body in Don DeLillo’s Falling Man
Don DeLillo’s Falling Man addresses cultural changes within the age of postmodern indifference and global terror, as the reaction to the image of a falling body becomes controversial following the events of 9/11. After being initially removed by the media, Richard Drew’s provocative photo titled “The Falling Man” captures a body falling against the backdrop of the World Trade Center, and is recovered and reexamined in DeLillo’s novel. Several types of bodily disturbances are illuminated in Falling Man as the fictional bodies of both American citizens and foreign terrorists become susceptible to strange mutations and disarticulations. DeLillo uses the bodily form as a reference point to expose and analyze the hidden atrocities of American exceptionalism—a system that accepts and allows actual human bodies to become the waste by-product of these global exchanges. Image and reality have become blurred in the era of postmodernity, and the outrage over Drew’s intriguing photo immediately after 9/11 should raise suspicion as to this image’s cultural significance. By encompassing a strange mix of bodily concerns such as viral infections, detached faces, and the unique phenomenon of organic shrapnel, DeLillo unearths the suffering body from its hiding place and brings to the forefront again in Falling Man
In an interconnected world: Joint research priorities for the environment, agriculture and infectious disease
In 2008 the UNICEF/UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases (TDR) commissioned ten think-tanks to work on disease-specific and thematic reference groups to identify top research priorities that would advance the research agenda on infectious diseases of poverty, thus contributing to improvements in human health. The first of the thematic reference group reports - on environment, agriculture and infectious diseases of poverty - was recently released. In this article we review, from an insider perspective, the strengths and weaknesses of this thematic reference group report and highlight key messages for policy-makers, funders and researchers
Computer-guided concentration-controlled trials in autoimmune disorders
A randomized concentration-controlled clinical trial (RCCCT) is an alternate experimental design to the standard dose-controlled study. In a RCCCT, patients are randomly assigned to predefined plasma or blood drug concentration ranges (low, medium, and high). With the caveat that concentration ranges are sufficiently separated, this design should enhance the ability to discover important concentration response relationships. FK-506, a potent and promising immunosuppressive agent for prevention and treatment of graft rejection, has shown significant clinical activity in some immune-mediated disorders. To implement the RCCCT design, a novel FK-506 intelligent dosing system (IDS) was used to guide all doses to prospectively achieve the target concentration range specified in the study protocol. Patients enrolled in these trials suffered from a variety of autoimmune disorders, including multiple sclerosis, primary biliary cirrhosis, psoriasis, autoimmune chronic active hepatitis, and nephrotic syndrome. We observed excellent predictive performance of the IDS for all patients. The accuracy (mean prediction error) of the IDS was −0.022 ng/ml and the precision (standard deviation of the prediction error) was 0.119 ng/ml. Thus, the IDS is both accurate and reproducible for autoimmune patients. We conclude that the RCCCT design, guided by an accurate and precise IDS, is an informative and cost-effective approach for evaluation of efficacy and safety of effective but highly toxic agents. © 1993 Raven Press, Ltd., New York
The current status of hepatic transplantation at the University of Pittsburgh.
Tacrolimus is a more potent and satisfactory immunosuppressant than CyA for combination therapy with prednisone. In randomized trials comparing the 2 drugs, the ability of tacrolimus to rescue intractably rejecting grafts on the competing CyA arm allowed equalization of patient and graft survival on both arms when the intent-to-treat analytic methodology was applied. The ability of tacrolimus to systematically rescue the treatment failures of CyA suggested, as a matter of common sense, that it is the preferred baseline drug for hepatic transplantation. This conclusion was supported by analysis of secondary end points, including the ability to prevent rejection. Hepatic-intestinal, multivisceral and isolated intestinal transplantation became feasible on a practical basis only after the advent of tacrolimus. Nevertheless, better management strategies must be devised before intestinal transplantation, alone or with other abdominal viscera, will meet its potential. One such strategy is based on the discovery of the presence of previously unsuspected, low-level donor leukocyte chimerism in long-surviving allograft recipients. We believe that this chimerism is the essential explanation for the feasibility of organ transplantation and a link to the acquired neonatal tolerance demonstrated by Billingham, Brent and Medawar (32). The hematolymphopoietic chimerism in organ recipients explains why weaning to a drug-free state in selected long-term survivors is frequently feasible and particularly if the allograft is a liver. Weaning should never be attempted without a stepwise protocol and careful monitoring of graft function. Recognition of the natural chimerism that develops after whole organ transplantation has led to efforts to augment it with perioperative donor BM infusion. This procedure has been shown to be free of significant complications (including GVHD) in all kinds of whole organ recipients, including those given intestine. The prospects of clinical xenotransplantation must be evaluated in the same context of chimerism as that delineated for allotransplantation with the discovery of spontaneous chimerism. Before addressing chimerism-related questions in xenotransplantation, the additional barrier of the complement activation syndromes that cause hyperacute rejection will have to be surmounted. Although measures to effectively transplant xenografts have so far eluded us, the availability of the more potent drug, tacrolimus, and recognition of the seminal basis of allograft (or xenograft) acceptance via chimerism has inserted an element of reality into the largely wishful thinking that has been evident in discussions about the future of xenotransplantation
- …