16,779 research outputs found

    Design of an integrated shallow water wave experiment

    Get PDF
    The experimental design and instrumentation for an integrated shallow-water surface gravity wave experiment is discussed. The experiment required the measurement of the water surface elevation, meteorological parameters, and directional spectra at a number of locations on a shallow lake. In addition, to acquire data under a wide range of conditions, an experimental period of three years was required. A system of telephone and radio modem links were installed to enable real-time monitoring of instrument performance at eight separate measurement locations on the lake. This system also enabled logging sessions to be optimized to ensure the maximum possible data return from this extended experimentIEEE Oceanic Engineering Societ

    HST imaging of hyperluminous infrared galaxies

    Full text link
    We present HST WFPC2 I band imaging for a sample of 9 Hyperluminous Infrared Galaxies spanning a redshift range 0.45 < z < 1.34. Three of the sample have morphologies showing evidence for interactions, six are QSOs. Host galaxies in the QSOs are reliably detected out to z ~ 0.8. The detected QSO host galaxies have an elliptical morphology with scalelengths spanning 6.5 < r_{e}(Kpc) < 88 and absolute k corrected magnitudes spanning -24.5 < M_{I} < -25.2. There is no clear correlation between the IR power source and the optical morphology. None of the sources in the sample, including F15307+3252, show any evidence for gravitational lensing. We infer that the IR luminosities are thus real. Based on these results, and previous studies of HLIRGs, we conclude that this class of object is broadly consistent with being a simple extrapolation of the ULIRG population to higher luminosities; ULIRGs being mainly violently interacting systems powered by starbursts and/or AGN. Only a small number of sources whose infrared luminosities exceed 10^{13}Lsun are intrinsically less luminous objects which have been boosted by gravitational lensing.Comment: 16 Pages. Accepted for publication in MNRA

    Dielectric friction and polar molecule rotational relaxation

    Get PDF
    Using the Onsager cavity model the frequency dependent torque due to the long range dipole-dipole interaction is derived for an electric dipole rotating in a polar liquid. This generalizes to all orders the result first order in the angular velocity derived by Fatuzzo and Mason and by Nee and Zwanzig. For a constant angular velocity the dielectric frictional torque on a rotor is shown to depend upon the complex permittivity only at the frequency of rotation and has no zero frequency contribution as given by the first order theory. The effect of dielectric friction upon the rotational Einstein relation and the second fluctuation-dissipation theorem is derived. Unlike the first order theory and consistent with the suggestion of Hubbard and Wolynes this theory invalidates the rotational Einstein relation when long range dipolar coupling effects are included in the theory of rotational relaxation. The first order theory is valid only for high angular frequencies above (2kT/I) . The formulation presented in this report is most conveniently applicable when significant inertial effects are present. In a sample calculation for highly compressed polar gases it is shown that dielectric friction produces a contribution to the angular momentum relaxation time second order in the gas density. This contribution is significant for rapidly rotating polar molecules of small moment of inertia at number densities above 2 × 10 cm

    Radio Observations of Infrared Luminous High Redshift QSOs

    Get PDF
    We present Very Large Array (VLA) observations at 1.4 GHz and 5 GHz of a sample of 12 Quasi-stellar Objects (QSOs) at z = 3.99 to 4.46. The sources were selected as the brightest sources at 250 GHz from the recent survey of Omont et al. (2001). We detect seven sources at 1.4 GHz with flux densities, S_{1.4} > 50 microJy. These centimeter (cm) wavelength observations imply that the millimeter (mm) emission is most likely thermal dust emission. The radio-through-optical spectral energy distributions for these sources are within the broad range defined by lower redshift, lower optical luminosity QSOs. For two sources the radio continuum luminosities and morphologies indicate steep spectrum, radio loud emission from a jet-driven radio source. For the remaining 10 sources the 1.4 GHz flux densities, or limits, are consistent with those expected for active star forming galaxies. If the radio emission is powered by star formation in these systems, then the implied star formation rates are of order 1e3 M_solar/year. We discuss the angular sizes and spatial distributions of the radio emitting regions, and we consider briefly these results in the context of co-eval black hole and stellar bulge formation in galaxies.Comment: to appear in the A
    corecore