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Dielectric friction and polar molecule rotational relaxation 
D. R. A. McMahona) 

Department of Physics. University of Queensland. St. Lucia. Queensland. 4067. Australia 
(Received 2 October 1979; accepted 30 October 1979) 

Using the Onsager cavity model the frequency dependent torque due to the long range dipole-dipole 
interaction is derived for an electric dipole rotating in a polar liquid. This generalizes to all orders the 
result first order in the angular velocity derived by Fatuzzo and Mason and by Nee and Zwanzig. For a 
constant angular velocity the dielectric frictional torque on a rotor is shown to depend upon the complex 
permittivity only at the frequency of rotation and has no zero frequency contribution as given by the first 
order theory. The effect of dielectric friction upon the rotational Einstein relation and the second 
Iluctuation--<lissipation theorem is derived. Unlike the first order theory and consistent with the 
suggestion of Hubbard and Wolynes this theory invalidates the rotational Einstein relation when long 
range dipolar coupling effects are included in the theory of rotational relaxation. The first order theory is 
valid only for high angular frequencies above (2kT 11,)11.1. The formulation presented in this report is 
most conveniently applicable when significant inertial effects are present. In a sample calculation for 
highly compressed polar gases it is shown that dielectric friction produces a contribution to the angular 
momentum relaxation time second order in the gas density. This contribution is significant for rapidly 
rotating polar molecules of small moment of inertia at number densities above 2X 1021 cm- 3 

I. INTRODUCTION 

In the Onsager cavity model for the dielectric constant 
of a nonassociative polar liquid, one considers a mole
cule at the center of a spherical cavity inside the dielec
tric treated as a continuum at the cavity walls. The ex
tension of this model to the frequency dependent complex 
permittivity has been considered by many authors. 1-8 

This model is an approximation to more general theories 
relating the complex permittivity to the dipole autocor
relation function of an embedded microsphere sufficiently 
large to be treated as a material with a complex permit
tivity the same as that of the whole dielectric speci
men. 9- 12 The cavity model is employed to make trac
table the calculation of the complex permittivity in terms 
of individual molecular processes. The justification for 
this is that a microscopiC model of slowly rotating mole
cules in Onsager cavities gives a relation between the 
dipole autocorrelation function and the complex permit
tivity consistent with the more general theories. 5,9 In 
this paper the cavity model is employed for both polar 
liquids and dense polar gases as an approximate theor
etical basis for calculating the effect of the long range 
dipOle-dipole forces on molecular rotational relaxation. 

Dielectric friction is the common name ascribed to 
the essentially many body coupling of a polar molecule 
with its surroundings by the long range dipOle-dipole 
interaction. It refers in practice to the torque exerted 
by the reaction field on the molecule as it rotates in the 
cavity. This torque has been approximated to first 
order in the angular velocity by several authors4, 5,8,13,14 

by assuming that the dipole rotation is sufficiently "slow." 
Such derivations do not provide a precise criterion for 
slow rotation as distinct from "fast" rotation, nor do 
they present an analysis of whether dipole rotation in 
actual polar liquids satisfy the slow rotation criterion. 
Hubbard and Wolynes15 have pointed out that slow rota
tion corresponds to a molecular reorientational relax
ation time which is large compared with the character-

a) Queen Elizabeth II Postdoctoral Fellow. 

istic relaxation time of spontaneous cavity field fluctu
ations. This condition is not satisfied in pure polar liq
uids but can be for large foreign polar molecules dis
solved in a relatively fast relaxing polar solvent. Em
ploying a rotational Smoluchowski equation, Hubbard and 
Wolynes extend the slow rotation theory to cover the pure 
dipole liquid case' correctly and apply it to the calculation 
of all Legendre polynomial time correlation functions 
of dipole orientational relaxation. As they suggest, di
electric friction for permanent dipole dielectrics may be 
Observable by comparing the results from a battery of 
experiments sensitive to different orders of orientational 
relaxation. 

This paper presents an alternative, and in formal 
terms, a more general treatment of the rotational di
electric friction problem than the approach of Hubbard 
and Wolynes. The approach here is to calculate the 
frequency dependent dielectric frictional torque to all 
orders in the angular velocity and then to deduce the re
sultant consequences for the rotational Einstein relation 
and the second fluctuation-dissipation theorem. Both 
this and the Hubbard and Wolynes treatment emphasize 
the general inadequacy of the slow rotation approximation 
where only a first order angular velocity treatment is 
used. Indeed, the theory presented here shows that a 
constant angular frequel!cy equal to w~= (2kT/IY!2 char
acteristic of the Maxwell-Boltzmann distribution should 
be regarded as a fast rotation rather than a slow rotation 
for the purpose of calculating dielectric friction effects. 
Whereas the rotational Einstein relation faiis in the 
Hubbard and Wolynes treatment because the character
istic relaxation time for cavity field spontaneous fluctu
ations is not significantly smaller than the dipolar re
orinetation time, the rotational Einstein relation fails 
in our formulation because all powers of the angular 
velocity contributing to the dielectric friction effect are 
needed. 

Unfortunately, the theory presented here is not easily 
applied to the small angle rotational diffusion case con
sidered by Hubbard and Wolynes because the general ex-
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2412 D. R. A. McMahon: Polar rotational relaxation 

pression for the frequency dependent rotational diffusion 
constant is dynamical mOdel dependent and not expres
sible in terms of the complex permittivity alone as is 
possible with the first order theory. The theory is more 
appropriately applicable to large angle rotational diffu
sion or quasifree rotational motion. In this case the 
generalized second fluctuation-dissipation theorem may 
be applied to deduce the frequency dependent friction 
tensor and hence the dielectric friction contribution to 
the angular momentum relaxation rate Tj11. (w) may be 
deduced. A calculation of Tj11. (0) including dielectric 
friction effects is performed in Sec. V for polar mole
cules in a highly compressed rigid dipolar gas. This is 
believed to be the first attempt to perform such a calcu
lation and is made possible only by the development for 
the cavity model of the formally exact solution to the di
electric friction problem. Dielectric friction in gas 
phase rotational relaxation proves to be important only 
for highly polar molecules of small moment of inertia 
and for number densities above 2x 1021 cm-a• The con
tribution to Tfl. (0) due to dielectric friction is quadratic 
in the gas denSity. 

An important result is that the first order theory re
mains true at angular frequencies much larger than wl. 

for a gas phase, quasifree rotation theory. In liquids 
the situation for high frequency rotational relaxation is 
less clearj however, one may expect on physical grounds 
the first order theory to apply down to the much lower 
frequencies nearer Wl.' As pointed out in an earlier 
paper, 16 the functional dependence upon the complex per
mittivity E(w) of the first order dielectric friction con
tribution to the orientational relaxation time for a rigid 
dipole dielectric is the same as the total dielectric fric
tion effect in a harmonic oscillator dielectric satisfying 
the well-known frequency dependent Clausius-Mosotti 
relation. This enables dipolar plasmons to be treated 
within the context of a single pseudo-oscillator theory 
which incorporates the harmonic oscillator dielectric 
and the plasma as other special examples. The approx
imate validity of the first order theory for dipOlar di
electrics at high frequencies enables the original Lobo, 
Robinson, and Rodriguez17 theory of dipolar plasmons 
to be retained. 

II. DERIVATION OF THE DIELECTRIC FRICTION 
TORQUE 

We follow Nee and Zwanzig, 8 who considered a mole
cule of vacuum permanent electric dipole moment p.v(t) 
and isotropic polarizability X .. at the center of a spheri
cal cavity of radius a. The polarizability is related to 
the dielectric constant ( .. by «( .. -1)/«( .. + 2) = X .. / a3 at 
frequencies where the refractive index n = (1 '2 is insen
sitive to molecular rotation. We assume that the appro
priate electric dipole moment undergoing rotational dif
fusion is the shielded moment p.(t) = H( .. + 2)P.v(t). 

A reaction field R(t) is produced at the mOlecule due 
to its polarization of the surrounding dielectric, approx
imated as a continuum. There is a dielectric frictional 
torque N(t) = p.(t) xR(t) exerted on the molecule. The 
reaction field is related to p.(e) for all e ~ t by 

R(t) = i~ p.(e)g(t - e) de, (1) 

where 

=0 T<O 

and 

- (w) _ 2(E(w) - ( .. ) 1 
g - ( .. (2E(w) + ( .. ) 7}' (2) 

where (w) = ('(w) - i("(W) is the complex permittivity. 
Defining ~.j'(w) = L: N(t)e-1wtdt, we may write 

N(w) =1'" g(T)e-1wT dT ('" e-1w8 p.(e + T) X p.(e)de. (3) 
o )_«1 

JJ.(e + T) can be expanded out as a Taylor series in T. 
Let us define 

(4) 

where p.(n)(e) denotes the nth derivative with respect to 
e. 
Also define the vectors 

TJ(WjT) = f' (iw,T)n [e- 1W8 8~(e)de; 
"~1 n. ""00 

T~O, j=0,1,2, .•. 

=0 T~O. (5) 

Equation (3) is just 

N(w) = foOOg(T) To(w;T)e-IW~ dT • (6) 

Later analYSis shows that N(w) is best written as a con
volution of the Fourier-Laplace transforms of g(T) and 
To(WjT). Thus, we may write 

N(w) =; foo g(w')To(w;w - w')dw' , 
rr _00 

(7) 

where 

To(w;w - w') = faoo e-Hw-w' )~To(w;T)dT • 

Note that the displacement w - w - i1), 1) small and posi
tive' is to be made so that the integrands go to zero for 
T-"" . 

If we regard dielectric friction as turned on asymptot
icallyat e- _"", we may derive the useful identity 

i:oo 

e-IW88~(e)de = i: e-1w8 8;"'1 (e)de - i: e-/W8 8~l<e)de. 
(8) 

Equation (8) may be used to set up a hierarchy of coupled 
equations for the TJ(WjT). The case n=j + 1 in Eq. (8) 
leads to a trivial result because 8~.1(e) = -8f1(e). Also, 
81(8) =0. The Fourier Transform of 81.1 (8) is not fur
ther reducible using Eq. (8) and must enter as an inde
pendent quantity in the final formula for the torque. By 
differentiating TJ{W;T} with respect to T once and using 
Eq. (8) for n> j + 1, we find 
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D. R. A. McMahon: Polar rotational relaxation 2413 

dTj(w,x) -T ( ) 
dx J W,X 

xJ 
=jfXJ-TJ+t(W,x); j=O, 1, 2, ... , (9) 

where x = iWT and 

XJ = i: e-lw8s~+t(e)de. (10) 

Equation (9) can be solved by Fourier-Laplace trans
forms. We write TJ(w;w - w') = TJ(w, 5), where 
5=(1-w'/w) and where 

- 1 i~I'" Tiw;5)=-.- e-Sl&TJ(w;x)dx. 
tW 0 

The sign of the upper limit here depends upon the sign 
of w. Again taking care that the integrands go to zero 
as T - Q(), we find the following hierarchy of equations: 

- 1 1 -
(5 -1)To(w; 5)= -.- - Xo -Tt(w; S), 

tW 5 

from which the required solution is 

- , 1 '" (- 1 )k+l 
To(w; w -w )= -:- L X k -( 1) 

tW ".0 S 5-

'" _ ( 1 )""1 
=LYk(W) '(' ) 

k-O W W - W 
where 

Yk(w) = .[ e-1w8 lJ,(k)(e) x lJ,(k+1) (e)de • 

Substituting Eq. (11) into Eq. (7) leads to 

'" 1 f'" ( 1 )""1 N(w) =LYk(W)-2 g(w'),(, _) dw' • 
k-O 11" _00 W W w. 

(11) 

(12) 

(13) 

Causality requires that g(w') has all singularities 
above the real w' axis. The other singularities in the 
integrand of Eq. (13) are at w' = 0 - il5, w' = W - il5 and 
are below the real w' axis. The contour integrations can 
can be completed below the real w' axis so that only 
these two singularities contribute. 

It can be shown by induction that 

( , ,1 \k+l=(!.),,"1 t(-1))1 (k+1)1 
W (w -w)) W 1-0 W 1lkl 

The proof of Eq. (14) is facilitated by the relations 

~ (k + 1)1 _ (k + 1 + n)l 
~ 11k! - nl(k+1)1 O<;;n<k, 

~(k+l)1 1 (2k+2)1 
f.{likl = '2 (k + 1)1 (k+ 1)1 ' 

(_,1_)" 1, =(-1))" 1, _ ~ (_1i\m+l(_,1_)n-m , 
w - w w W W 01-0 \ w / w - w 

(1~)" _,1_ =(1)\" +-_ f{(1)) .. +1 (1~\"-m 
\w W - w W / w - w .. -0 \w w J 

Employing Eq. (14) in Eq. (13) and completing the con
tour integral below the real w' axis term by term for 
each k and 1 produces the final result 

N(w) = ~ tt(-1)I /J1)),,"1 Yk(w) (k +,1)1 
tWk.OI=O \w 11k. 

(15) 

Equation (15) is valid for arbitrary dipole motion as 
no particular assumptions about it have been made. 
When the dipole 1J,(t) is rigid, that is, when there is no 
significant vibration on a time scale shorter than one 
full dipole rotation, we can define a set of w dependent 
vectors 0k(W) by Yk(w) = fJ.20k(W) and the set of friction 
coefficients tk(w) so that Eq. (15) becomes 

'" 
N(w) = - L tk(W)Ok(W) • 

k=O 

The first term, k = 0, of Eq. (14) is exactly the first 
order result of Nee and Zwanzig8 where no(w) = OJ. (w) is 
the Fourier transform of the component of the angular 
velocity O(t) perpendicular to lJ,(t). For k> 0, 0k(W) can
not be simply expressed in terms of jj(w) and 0J.(w) 
alone. Indeed, lJ,(k)(t) X 1J,(""\)(t) depends upon 1J,(t) and 
O(t) and the time derivatives of O(t). In the following 
sections we shall be mainly concerned with special cases 
where the k> 0 terms are relatively Simple, in particular 
where the molecular rotation is perturbed significantly 
only on a time scale longer than one full rotation of the 
molecule. However, more generally applicable expres
sions for the angular momentum correlation tensor and 
the second fluctuation-dissipation theorem are also 
derived. Application to particular problems cannot be 
divorced from specific kinematical and dynamical con
siderations of molecular reorientation and the theory 
loses the inherent Simplicity of the first order theory 
which can be expressed in terms of the complex permit
ti vity alone. 

III. APPLICATION TO CONSTANT ANGULAR 
VELOCITY ROTATION 

A difficulty arises if we attempt to use Eq. (15) to ob
tain the k ~ 1 corrections to the first order theory (k = 0). 
To demonstrate this we consider the case of a constant 
precessional angular velocity OJ for a symmetric top 
molecule with the electric dipole moment along the sym
metric axis. Let I" and IJ. denote the moments of inertia 
parallel to and perpendicular to the figure axis, respec
tively. OJ is related to the angular momentum J by 
OJ =J/IJ. and of course must be distinguished from the 
total angular velocity 0 which relates to J through the 
moment of inertia tensor I by the equation J = I· O. 

Let e be the angle between 1J,{t) and OJ. Let k be the 
unit vector parallel to OJ and let n(t) be the unit vector 
perpendicular to k and passing through the symmetry 
axis. We write u{t) = lJ,(t)/ fJ. for the unit vector along IJ,. 

J. Chern. Phys., Vol. 72, No.4, 15 February 1980 
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2414 D. R. A. McMahon: Polar rotational relaxation 

Then we have 

u(t) = cos8 k + sin8n(t) , 

where 

n(t) = i cosOJt + j sinOJt . 

noW = it )( It (1) leads to the result 

Oo(w) = 21TI)(W) sin280J - OJ sin8cos8n(w) , 

where I)(w) is the Dirac I) function and 

(16) 

(17) 

For k~ 1, it(~)(t»( it( .... 1 let) is easily calculated whereupon 
it is found that new) does not contribute to 0k(W) and we 
obtain 

(18) 

We see that only w = 0 determines the contribution to 
the frictional torque from the higher order k ~ 1 terms. 

In the limit w - 0 we take the complex permittivity 
given by the Debye formula 

E(w) -€.. 1 
€o - €.. - 1 + iWT M ' 

which leads to 

- - - - iWTG 
g(w) -g(O) =g(O) 1 + iwiG' 

where 

and 

2(€0 - € .. ) -.!... 
€ .. (2€0 + € .. ) a3 

(19a) 

(19b) 

(19c) 

Using Eqs. (18) and (19) in Eq. (15) we find that all 
terms for k~ 1 individually diverge for w- O. Thus, the 
first order theory or slow rotation theory breaks down, 
at least in the constant angular velocity case, as it is 
the first term of a series, all subsequent terms of which 
individually diverge. The series as a whole does con
verge however. 

To evaluate N(w) it is more convenient to return to 
Eq. (13) and perform the summation over k before doing 
the contour integration. We find 

.. (, 1 ) .... 1 Ln~(w) '(' _ ) 
~.o w w w 

21TOJI)(W) sin28 OJ sin8cos8n(w) 
= '(' ) n2 - '(' ) w w -w -.OJ w w -w 

The first term on the RHS has poles at w,., where 

w,.=iw ±i(w2 + 40J)1/2
• (20) 

The integrals over w' can be evaluated leading to the 
result 

- -2lTJ..I.2 sin281)(w)OJ [-( ) -( )] 
N(w) = i(w2 + 40~)1/2 (g w_ -g w. 

_ J..I.2 sin8c~s80J new) (i(w) -g(O)], (21a) 
zw 

whereas the first order approximation gives 

N- ()_ 2;; ( )[(i(O)-g(w)] 
o w - - J..I. '.1 W • zw 

(21b) 

Both N(w) and No(w) agree on the contribution to the 
frequency dependent torque proportional to new). This 
torque tends to flip OJ, and it is convenient to denote 
this "flip" torque as Nf{t}. The explicit time dependent 
torque may be written as 

N(t) = N (t) - ,,20 sin28 g( - OJ) - g(OJ) (22a) 
f .... J 2iO

J
' 

N (t) -N(t) 2n • 2111' g(O)-g(w) 
o - f - 11. '.J sm " 1m . • (22b) 

"'~ 0 lW 

It is quite evident that the exact theory Eq. (22a) pro
duces for a rotor a frictional torque which depends on 
the complex permittivity only at the frequency of rotation 
OJ/21T, whereas the first order theory has a contribution 
from the zero frequency complex permittivity. This re
sult for the exact theory is quite sensible physically as 
it simply means that the response of the dielectric sur
rounding the cavity to the rotating dipole field is at the 
driving frequency and depends upon the dielectric prop
erties only at that frequency. The first order approxi
mation' on the other hand, does not reflect this basic 
expectation of the theory of dielectric friction. Note 
that for 8* IT/2, a zero frequency dipole component exists 
with a corresponding zero frequency complex permittiv
ity contribution to Nf(t). 

To proceed further it is convenient to introduce real 
and imaginary parts of g(w) as g'(w) and g"(w), where 
in terms of €'(w) and €"(w), 

_'() 2 (€'(w) + € .. ) (2€'(w) + € .. ) + 2€"(W)2 
g W = a3€.. (2€' (w) + € .. )2 + 4€" (W)2 

-"() 6 €"(w) 
g w = ~ (2€'(w) + € .. )2 + 4€"(w)2 

Equation (22a) can be Simplified to give 

N(t) = - 11.2 sin28g"(OJ)k - 11.2 sin8cos8 

x [g"(OJ) n{t} + (g(O) -g'(OJ» m(!)] , 

where 

m(t) = i sinOJt - J cosOJi 

(23) 

is a unit vector forming a mutually perpendicular set 
of unit vectors with k and n(t). Equation (23) is derived 
using the general properties12 €'(w)=€'(-w), €"(w) 
= - €"(- w) which lead to g(w) =g'(- w) and g"(w) 
= -g"(- w). 

We may now use Eq. (23) to define the distinction be
tween slow rotation and fast rotation for the purpose of 
deriving the dielectric frictional torque. Only the first 
part of Eq. (23) giving NJ parallel to OJ need be used, 
as the "flip" component is the same for Eq. (23) and the 
slow rotation first order approximation. Using the 
Debye formula we find 

2-(0) . 211 
N J..I.g TGsm" 0 (24a) 

J = - 1 + (OJ T G)2 J, 

whereas Eq. (22b) may be employed to give the first 
order result 

J. Chern. Phys., Vol. 72, No.4, 15 February 1980 
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D. R. A. McMahon: Polar rotational relaxation 2415 

NJO= - J,.L2g(O) TG sin2(H1 J • (24b) 

Clearly, slow rotation requires (OJ T G)2« 1. 

To determine whether molecular rotation in actual 
polar liquids corresponds to fast rotation rather than 
slow rotation, consider the following relation between 
the relaxation time Tl for the dipole autocorrelation 
function and the molecular angular velocity relaxation 
time T J ~. This relation is well known and is given by12 

(25) 

Take Tl "" TAl, which is easily demonstrated from the gen
eral theory of dielectric relaxation. 12 Then we find 

W~TAI"" (W~TJ~)"I, 

where 

W~ = (2kT/h)1/2 (26) 

is the rms quantity (Oi)1/2. For small angle rotational 
diffusion W ~ T J ~ «1 and thus w ~ TAl» 1, and provided Eo is 
not too large TAl can be replaced by T G and suggests that 
W~T G> 1. Taking OJ "" W~ we obviously find that molecu
lar rotation in liquids corresponds to fast rotation and 
the first order theory is inadequate. 

The above analysis uses a free rotation approximation 
and assumes that the Debye formula is adequate over the 
whole range O-'S w-'S w~. In practice, Tl is W dependent 
via a frequency dependent angular momentum relaxation 
rate T J /w)"l. Thus, although molecular rotation may be 
strongly overdamped at low frequencies so that Eq. (25) 
actually applies for T 1(O) and TJ/O), Eq. (25) may fail 
for w "" w~ and the resultant high frequency underdamping 
may be observed as a peak in the absorption coefficient 
near w~. With OJ "" w~, Eq. (24b) still fails on the quite 
general ground that the complex permittivity of a liquid 
at low or microwave frequencies is quite different from 
that at far-infrared frequencies. The condition (OJT G)2 
« 1 for slow rotation still holds and is simply the re
quirement that OJ lie in the l microwave region. In prin
ciple the slow rotation condition may be satisfied for 
heavy foreign molecules dissolved in a relatively fast 
relaxing dielectric but (OJT G)2« 1 is actually much too 
restrictive in that it is based upon a free rotational cal
culation which ignores the effect of rotational damping. 
It is evident from the treatment of Hubbard and Wolynes15 

that the presence of intermolecular collisions or short 
range viscous damping slows down the net reorientation 
rate and indeed, as might be expected on physical 
grounds, the deviation from the first order theory is 
much less than indicated by the free rotation calculation. 
This is demonstrated in Sec. IV with an explicit calcula
tion of the dielectric friction coefficient. Both the exact 
and the free rotation calculations agree, however, in 
that the slow rotation approximation overestimates the 
low frequency dielectric friction coefficient. 

IV. CONSIDERATION OF THE EINSTEIN RELATION 
AND FLUCTUATION-DISSIPATION THEOREM WITH 
DIELECTRIC FRICTION 

It is generally necessary to deal with a body fixed 
frame of reference in which the moment of inertia tensor 

and the friction tensor are time independent. For our 
purposes this is not necessary, as our considerations 
will be confined to symmetric top molecules with J.L 

along the figure axis. For this case one need only use 
a quasi-body-fixed reference frame defined to rotate 
with the symmetric top molecule at the angular velocity 
0J(t) because the additional component adding to OJ to 
produce ° is directed only along the figure axis and does 
not contribute to dipole rotation. The advantage of the 
quasi-body-fixed frame is that J is constant in this frame 
in the free rotation case which facilitates the setting up 
of the second fluctuation-dissipation relation between 
the random torque tensor and the friction tensor. Quasi
body-fixed time derivatives will be denoted by 6/5t and 
the laboratory frame time derivative of any vector A 
will be related to that in the quasi-body-fixed frame by 
the usual equation dA/ dt = 6A/5t + OJ x A. Thus, 0. may 
be expressed in quasi-body-fixed terms by repeated ap
plication of the time derivative transformation to obtain 
i/ k ) and the definition 0lt = U(k) X it° •• 1) applied. 

It is quite apparent from Eq. (15) that the dielectric 
frictional torque N(t) can be written as a sum of convo
lution of 0k(t) with friction memory functions Gk(t). We 
shall also assume a short range viscous friction memory 
tensor ts(t). The structure of these two contributions to 
the frictional torque suggests that the generalized 
Langevin equation of motion for J(t) in the quasi-body
fixed frame can be employed. This requires introducing 
a random torque NR(t), thereby leading to the equation 
of motion 

(27) 

To proceed further rigorously is not pOSSible, and it 
is necessary to ascribe to the random torque certain 
statistical properties guided by the results of more rig
orous developments of the fluctuation-dissipation 
theorem, 18 in particular the Mori projection operator 
formalism19 and the reviews of Berne and Harp20 and of 
Berne. 21 J(O) is uncorrelated with NR(t), thereby giving 
(NR(t) J(O» = 0; however, by virtue of the equation of mo
tion j(t) =NR(t) + NF(t), where NF is the friction torque 
due to molecular rotation, the angular momentum J(t) 
begins to correlate with the random torque NR(t') for 
0< t' -'S t. Similarly, O.(t) becomes correlated with N R(t') 
so that in general (NR(t')J(t» * 0 and (NR(t')O,,(t))* O. 

Postmultiplying Eq. (27) by J(O) and taking the en
semble average we find that NR(t) is eliminated and an 
equation of motion for the tensor (J(t)J(O) is obtained in 
terms of the <Ok(t)J(O). Taking the Fourier-Laplace 
transform gives 

(j(w)J(O» = (iwl + ts(w)I~l)"1 

x [( J(O)J(O») - to i:.(w)(~.(w)J(O»] (28) 

As will be seen later, Eq. (28) is closely related to 
the rotational Einstein relation. Because the Einstein 
relation requires (j(w)J(O» to relate to some friction 
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2416 D. R. A. McMahon: Polar rotational relaxation 

tensor E(w) and (J(O)J(O» alone it is already evident from D/(w) = (0 )w}O ,(0» = I~2(j(w)J(0» • (30) 
Eq. (28) that dielectric friction invalidates the Einstein 
relation through the introduction of the additional tensors Suppose now that for all k 

(O~(w)J(O». (Ok(W)J(O» = (Ok(O)J(O» • (J(0)J(0)r1 • (j(w)J(O» . 

The second fluctuation-dissipation theorem is obtained 
by postmultiplying Eq. (27) by NR(O), employing NR(O) 
= (OJ/M)o on the LHS and taking the ensemble average. 
One may use the relation 

which follows from the independence of time correlation 
f~nctions from the chOice of the initial time. 20 The re
sultant equation is 

_ 1i
2
(J(t)l(O» _l lts(t_T)"(1iO / (T) J(O»)1iT 

M 0 1iT 

Taking the Fourier-Laplace transform, we find 

(NR(w)NR(O» = - (iwl + ts(w)I~l). [iw(j(w)J(O» - (J(O)J(O»] 

00 

-L ~k(w)[iw(iik(W)J(O» - (Ok (O)J(O»] . 
1<=0 

This can be simplified by eliminating (j(w)J(O» and the 
(Ok(W)J(O» by using Eq. (28). We find then the second 
fluctuation-dissipation theorem 

(29a) 

where 

(29b) 

and the dielectric friction tensor is given by 
00 

'D(W) = L 'k(W)(Ok(O)J(O» " (O/(O)J(O»-l. (29c) 
k-O 

If the dielectric friction and the frequency dependence 
of these tensors are omitted, then Eqs. (28) and (29a) 
resemble the usual results of rotational Brownian mo
tion. 22 The results of the earlier work differ only in 
that for nonspherical molecules actual body-fixed coor
dinates are used rather than the quasi-body-fixed frame 
employed in this report. Thus, whereas the friction 
tensor in other works is associated with the total angular 
velocity 0, the present work associates the friction 
tensor with 0 / NR(t) used in this paper, therefore, is 
not the total random torque acting on the molecule; how
ever, it is a reasonable assumption that the omitted 
component of the random torque which is along the sym
metry axis of the symmetric top molecule is statistically 
uncorrelated with N R(t), so that if so desired one can 
simply add this omitted contribution to the friction ten
sor to obtain the total friction tensor. This is of no con
sequence for the dielectric friction problem when J.L is 
along the symmetry axis. 

The rotational Brownian motion theory leads to the 
definition of the frequency dependent rotational diffusion 
tensor12,23 D(w) = (O(w)O(O» , and since we have J.L along 
the symmetry axis we may employ the more restricted 
diffusion tensor 

(31) 

Then combining this with Eq. (28), solving for (j(w)J(O», 
and employing the definition of ,(w) from Eqs. (29b) and 
(29c), we find 

(j(w)J(O» =(iwl + I~1 t(w)tl, (J(O)J(O» , (32) 

which when combined with Eq. (30) is just the general
ized rotational Einstein relation. The usual well-known 
Einstein relation is the zero frequency case w = O. 

The Einstein relation is valid, even in the presence 
of dielectric friction, only if Eq. (31) holds for all k. 
For k = 0, Eq. (31) holds since it is easily shown from 
the rotational kinematics of a symmetric top that 

(O.L(O)J(O»· (J(0)J(0)r1 • (j(w)J(O» = (O.L(w)J(O» . 

For k? 1, however, 0k(O) is not simply expressed in 
terms of kinematics alone but involves contributions 
from NR(O) and its time derivatives, and so there is no 
general reason for Eq. (31) to hold. Thus the Einstein 
relation holds only to first order (k = 0) but generally 
breaks down when higher approximations are included. 
This result is qualitatively consistent with the conclusion 
of Hubbard and Wolynes. 15 In their model, the Einstein 
relation fails because a molecule can reorientate signif
icantly on the same time scale of spontaneous fluctuations 
of the local cavity field which couple to the electric di
pole to produce the random torque NR • The Einstein re
lation requires a slow reorientation compared with 
fluctuations of the cavity field, and the inclusion of the 
higher order terms k? 1 is just the formal manner of 
introducing the fast reorientation process and the re
sultant failure of the Einstein relation. 

The method of Hubbard and Wolynes is not fundamen
tally different from the approach in this paper, but 
whereas they are restricted to small angle rotational 
diffusion the present approach is more general and may 
be extended to the situation of significant inertial effects 
and large angle rotational diffusion. For small angle 
rotational diffusion one only requires to find the compo
nent D,.L(w) =I~2(j(w)J(O})J. for rotation perpendicular to 
J.L but to use Eq. (28) one must choose a specific dynam
ical model. One suitable mOdel has in fact already been 
analyzed by Hubbard and Wolynes who derived a rota
tional Smoluchowski equation giving the time evolution 
of the orientational distribution function under the influ
ence of the random cavity field fluctuations. In this ap
proach it is not necessary to use Eq. (28) to get D,.L(w) 
nor Eq. (29c) to get 'D(W), but one may calculate the 
orientational correlation functions and their respective 
correlation times more directly from the Smoluchowski 
equation and calculate tD(w) directly from the spontaneous 
cavity field fluctuations via Eqs. (29a) and (29b). This 
is just a method of dealing with full summations over k 
and l, which is very necessary because all individual 
terms t~(w). k? 1, actually diverge at w = 0 for Debye 
relaxation. 

In the latter approach it is necessary to know the 
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D. R. A. McMahon: Polar rotational relaxation 2417 

random cavity field time autocorrelation function (oG(t) 
• oG(O». The random torque autocorrelation function, 
consistent with Eqs. (29a) and (29b), may be taken to be 
the sum of a short range viscous part and the long range 
cavity field part. The long range part is 

(NRD(t) NRD(O».L = ~«j.L(t) x oG(t»· (j.L(0) X oG(O») 

~ t(j.L(O)· j.L(t)) (oG(O)· oG(t» . (33) 

This latter relation approximates j.L(t) as remaining un
correlated with oG(t), which is not of course perfectly 
accurate but is roughly correct if dielectric friction is 
only a small part of the total friction effect. (oG(O) 
• oG(t» may be obtained by imagining a heavy foreign 
molecule in the liquid that reorientates slowly on the 
time scale of oG(t). Thus, for this molecule j.L'(t)<:: j.L'(0), 
so that 

(N~D(t)N~D(O».L ~ t j.L'2(oG(0) • 1lG(t» , 

and since the first order approximation (k,= 0) to Eq. 
(29c) is sufficient we have 

to(w)(n.L(O)J(O».L~ tj.L'2 (oG(O)· 1l'Hw» , 

which can be inverted to give15 

3kT 1 100 
-(1lG(O) • oG(t» = -:-:rr -2 e''''' 1:o(w)dw , 

jJ. "-00 
and using Eq. (19) 

1 ,. ( )_g(O)-g(w) 
J?l bO w - iw 

-() T G 

gO 1 + iWTG ' 

we obtain the Eoo "* 1 generalization of Hubbard and 
Wolynes' result 

(1lG(O). 1lG(t» = ~kT(EQ - Eoo) e-IIT G. 
a Eoo(2Eo + E .. ) 

(34) 

Taking in the Debye or long time limit (j.L(0)· j.L(t» 
= j.L2 e- IITI in Eq. (33), applying the Fourier-Laplace 
transform, and using Eqs. (29a) and (29b) to obtain 
hw), we find, again in the Debye or low frequency limit, 

'i (w)~ j.L2g (?)TD (35a) 
D.L 1 + lWT D ' 

where 

(35b) 

We see that the deviation from the slow rotation or first 
order apprOximation for t}le w = 0 dielectric friction co
efficient is by the factor Tl/(TG + T 1) which on using Eq. 
(19c) and the relationI6•17 T M = Tl (2Eo + Eoo)(2Eo + E~Eiil)"1 
comes to [1 + 3(00 (2Eo + E~Ei,t)-1 r1, which is typically 
«(0 = 5, E .. = 2) of the order of 0.64. The fast reorienta
tion process therefore leads to a significant reduction of 
~ D.L (0) relative to the first order theory and this agrees 
qualitatively ·,with;. the Hubbard and Wolynes model of the 
dielectric friction contribution to T l' 

Writing C1 (t) = (1/ jJ.2)(J.L(0)· j.L(t» it can be shown 
that12,23 

dC1(t) = _ 2 r'D (t)C (t -T)dr 
dt )0 I.L 1 , 

so that 

T 1(W) = (2DI (w»-I. 
.L (36) 

Suppose now that Eq. (31) is accepted, tantamount to a 
convenient choice of the statistical properties of the ran
dom cavity field. One may then obtain Tl(W) by substi
tuting Eq. (35a) into Eq. (32) and then employing Eq. 
(36). This enables us to compare this model with the 
result obtained by Hubbard and Wolynes, 15 which is 

( - (»-1 (0) J.L
2
g(0)T G 

T 1 = 2D I.L 0 = TO + Y 2kT' (37a) 

where 

(37b) 

and 

(37c) 

As shown in the earlier paper, y(O) may be regarded 
as a variable dielectric friction coupling coefficient of 
a pseudooscillator model of dielectric relaxation. 16 The 
slow rotation theory corresponds to y(O) = 1. If one were 
to employ Eq. (35a) in an Einstein relation, then a re
sult similar to Eq. (37a) would be obtained except that 
y(O) is replaced by y'(0)=T1(TG+T1)"1. Thus, taking 
EO = 5, E .. = 2, one would obtain y'(O) = O. 64, whereas it 
may be shown that16 y(O) = O. 36. In both cases the failure 
of the slow rotation apprOximation is significant. Also, 
the failure of the Einstein relation, measured by the dif
ference between y(O) and y'(O), is significant in the Hub
bard and Wolynes model. 

V. EFFECT OF DIELECTRIC FRICTION ON HIGHLY 
COMPRESSED POLAR GAS ANGULAR MOMENTUM 
RELAXATION TIMES 

There has been considerable interest in recent years 
in observing experimentally the systematic relationship 
between the angular momentum relaxation time T I.e (0) 
and various reorientational relaxation times. System
atic variations may be obtained by denSity and tempera
ture changes and the results compared with theoretical 
models. A great deal of success has been achieved with 
the extended rotational diffusion models 24 originally pro
posed for linear rotors by Gordon25 and later extended 
to spherical top26 and symmetric top27 molecules by 
McClung and others and by Bliot et ai. 28 For highly 
polar fluids there is expected to be a significant contri
bution to these relaxation times from dielectric friction. 
To prove this by experimental means is not simple, how
ever. Thus, although dielectric friction enters small 
angle rotational diffusion in the way indicated by Eq. 
(37a), the relation that can be tested experimentally by 
present means is Eq. (25) and its generalization to other 
correlation functions. However, Eq. (25) does not sep
arate out the dielectric friction contribution, necessitat
ing other experimental approaches for detecting dielec
tric friction. Temperature and density variations may 
be considered; however, such studies suffer from a de
ficiency in knowledge about how TO is so affected in the 
liquid state. A systematic study of different types of 
reorientation relaxation times as suggested by Hubbard 
and Wolynes15 can in principle circumvent this problem. 
In this section, the possibility of observing the contribu
tion of dielectric friction to the angular momentum re
laxation time directly is considered. Our analysis is 
restricted to highly compressed, highly polar gases for 
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2418 D. R. A. McMahon: Polar rotational relaxation 

which the cavity model is expected to provide, at least 
for the present heuristic purposes, a reasonable esti
mate. The fingerprint of dielectric friction is a qua
dratic density dependence of Tj1.L (0) which can be changed 
with temperature and with foreign gas mixing in a reli
ably predictable manner. 

The formal theory of the angular momentum autocor
relation function can be developed in terms of Mori 
memory functions. 19-21 If we retain at this stage a full 
tensorial notation the theory requires a memory tensor 
KI (T) appropriate to a dense gas such that 

O(J(~:(O» = _ f K t (T) • (J(t - T)J(O)OT , (38) 

where in general 

Kt (0) = (NR (O)NR (0) • (J(O)J(O)tt . 

Because in a gas (NR(t)NR(O) decays rapidly with 
(J(t)J(O»t2,29 it is justifiable to use Eq. (38) and the as
sociated relation 

K t (T) = (NR (T)NR (0» • (J(O)J(O)tt , 

which by Eq. (29a) is equivalent t030 

Kt (w) = I~t f(w) . (39) 

Equations (38) and (39) together are equivalent to Eq. 
(32), but Eq. (32) requires Eq. (31) to be satisfied for 
all k. It is readily checked that Eq. (31) is satisfied for 
all k if Eq. (18) of the free rotation theory is employed. 
This corresponds physically to a rapidly changing ran
dom long range torque which is associated with the di
pole directions of molecules in the surrounding fluid 
rapidly changing compared with their angular momentum 
vectors. Although our particular problem does not con
cern perfectly free rotating molecules, we shall regard 
Our present quasifree rotation problem as sufficiently 
similar to enable Eq. (39) to be employed. Thus we are 
restricted to W.LT h (0) ~ 21T, or in other words, at least 
one full molecular rotation on the time scale of T J)O) 
but high enough gas densities to justify use as a first 
apprOximation of the cavity model. 

The frequency dependent angular momentum relaxa
tion time is defined via the relation 

(j(W)J(O».L 1 
(J(O)J(O».L = iw + T~~ (w) , 

(40) 

and from Eq. (38) 

I/T J.L (w) = (Kt (w».L • (41) 

Using (J(O)J(O).L =1Ii (OD =1Ii wi and Eqs. (40) and (30), 
we find for the small angle rotational diffusion model, 

Dr (W) = kT I~tT r (w)(l + iWT J (w))"l, (42) 
.. 1. .., ~ ~ 

Which for W = 0 and combined with Eq. (36) reproduces 
the well-known Eq. (25). For W* 0 the factor 
(1 + iw T J i (w»-t produces the important inertial effects 
for w ~ Wi originally discussed for the dielectric friction 
problem and high frequency dipolar plasmons by Lobo, 
Robinson, and Rodriguez. 16,17 Using Eqs. (25) and (37a), 
we have 

(43a) 

or after using the Onsager equation to get the result 

~= (€o-€~)2 
I.Lw.L 3€o€~ 

we obtain in dimensionless terms 

1 
(43b) 

The angular momentum relaxation is evidently locked 
into the fluid viscous relaxation process via T G "'" T Q 

making independent observation of dielectric friction 
effects difficult. As we show below, this no longer oc
curs in the quasifree rotation limit. 

Using Eqs. (41), (39), (29b), and (29c), noting that all 
tensors are diagonal, we get for quasifree rotation 

_1 __ Is ... (w)+Io(w) +f:t (w)(Ot(O)J(O».L (44) 
TJ.L(w) - I.L lot k (JO)J(O».L· 

From Eqs. (16) and (18), we have for all k 

(Ok(O)J(0».L=~I.L(010~k), (45) 

where OY=sin2BO~. We have used (sinBcosB) =0, which 
eliminates the angular momentum flip component asso
ciated with the k = 0 term. Thus, dielectric friction in 
the quasifree rotation limit affects only the magnitude 
of the angular momentum, not its direction. The re
sultant expression for T Jl. (0) therefore cannot be em
ployed in the extended rotational diffusion models which 
associate T h (0) with a randomization of the direction of 
the angular momentum. 24- 28 This difference plus the 
fact that the angular momentum relaxation time is now 
frequency dependent implies that molecular band shapes 
of strongly polar gases with significant dielectric fric
tion should deviate from the extended rotational diffusion 
model results; however, no attempt is made in this 
report to develop this theme. Instead, we restrict our
selves to a heuristic consideration of the circumstances 
where dielectric friction is important. 

Combining Eqs. (44) and (45), we find 

1 tS.L(w) f.l2 1 
-------+-~ 
T J.L (w) - 11. I.L 21T(Oi) 

x f~g(w')(sin2Bto(w'fl_wl)r)dw" 
which may be evaluated analogously to Sec. ill to give 

1 tS.1.(w) iJ.2 ( 2 (g(w.) -g(w ») () 
TJ .L(w) = ~ + I.L(O~ 0.1. i(w2 + 40~)ff2' 46 

where w" are again given by Eq. (20). It is interesting 
to note that for w2 » 40~, which is well satisfied by 
w~ 5w.L' 

_1_~ tS.1. (w) + f.l2 i(o) -g(w) 
TJ.L(w)- I.L I.L iw 

(47) 

This is equivalent to assuming the first order approxi
mation and gives rise to the important conclusion that 
the slow rotation theory is valid at high frequencies with 
significant inertial effects even if it fails at low frequen
cies w< W.L' The slow rotation approximation merely 
requires the characteristic dipole rate of change to be 
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D. R. A. McMahon: Polar rotational relaxation 2419 

slow compared with the probe angular frequency w. Thus 
one would expect the generalizations17,31 of the original 
Fatuzzo-Mason5 and Nee-Zwanzig8 theories based 
on the first order approximation to the high frequency 
range to be valid. Furthermore, Eq. (47) inserted into 
Eq. (42) should be valid for angular frequencies w well 
below 5w~ due to the effect of rotational damping in the 
main dispersion region making the slow rotation approx
imation more widely applicable than for the free rotation 
case. The importance of this point for the theory of di
polar plasmons has been emphasized in an earlier 
paper. 16 To avoid major revision, the plasmon theory 
requires the first order theory to work down to w ~ w~ 
at least. Due to rotational damping, this requirement 
is almost certainly justified but as yet still requires a 
formal proof. This point is returned to in Sec. VI. 

The angular momentum relaxation time T J~ (0) may be 
obtained from the NMR spin-lattice relaxation time. 24 

Thus we may confine our attention to w = 0, whereupon 
the dielectric friction contribution to Tj1 is purely real 

~ 

and so involves no angular frequency "shift" component. 
We then have 

1 1 1 
--- - ---+ ---
TJ~(O) - TJs(O) TJD(O) ' 

where 

1 112 <1 . 2 0 (-11(0) -"( 0 ») -(0) = I~ :2 sm 6 J g J - g .- J • 
T JD ~w~ 

This can be expressed in terms of E'(OJ) and E"(OJ) 
using the results of Sec. III to give 

1 3J..L2 / . 2 OJ E"(OJ) ) 
TJD(O) = kTa3\sm 6(2E'(OJ) + E",Y + 4E"(OJ)2' (48) 

For the purpose of generality we may take the molecule 
of interest to be different from those forming the sur
rounding dielectric. 

It will be noticed that the dielectric friction problem 
is closely similar to calculating the integrated absorption 
coefficient over the rotational absorption band of the 
solvent gas. This observation is now used to make some 
simplifications of the evaluation of the RHS of Eq. (48). 

As is well known, the integrated absorption coefficient 
in gas phase is to a good approximation density indepen
dent and not dependent upon intermolecular collisions. 32 

Although Eq. (48) differs in important respects, in par
ticular through the weighting of OJ E"(OJ) by sin28, the 
additional factor depending upon E' (OJ) and E" (OJ), and 
the fact that the integration over all OJ is weighted by 
the rotational distribution function, the analogy with 
Gordon's sum rule suggests that as a first approximation 
Eq. (48) be evaluated using the complex permittivity of 
a gas of freely rotating molecules. We shall approxi
mate the complex permittivity by 

(49) 

where C1 free (t) is the normalized dipole autocorrelation 
fUnction. J..L' is the dipole moment of the solvent mole
cules, and b is their respective Onsager cavity radius 
and is retained explicitly to bring out the symmetry that 

exists between the solvent and solute molecules. Taking 
the personal volume condition b-3 = 41Tn/3, for low den
sities we have as RHS coefficient of Eq. (49) the well
known result 

(50a) 

and at the high densities of immediate interest here 

41TnJ..L'2 (Eo - E .. ) (2Eo + E .. ) 
~= 3Eo 

(50b) 

Equation (50b) is, of course, the Onsager equation, 
and its use in Eq. (49) corresponds to the nondispersive 
approximation12,33 E:(w) ~ E .. to the Fatuzzo-Mason equa
tion. 5,9 This approximation is useful in calculating the 
integrated absorption coefficient because it involves a 
frequency weighting towards the high frequency range of 
the absorption band. 33 This is preCisely the case in the 
dielectric friction problem, firstly because of the OJ 
weight in Eq. (48), and secondly, an additional weight
ing towards high frequencies exists owing to the denom
inator function of E' (0 J) and E" (0 J)' The nondispersive 
approximation works well when the strongest absorbing 
range is well separated from the main dispersion re
gion and usually requires Eo »E... For the compressed 
gas phase dielectric friction problem, however, with 
Eo ~ 2 and E .. ~ 1 in the density region of interest, this 
assumption is not justified, but the error involved with 
the nondispersive approximation is not great because 
both Eo and E .. are small and the change to Eq. (49) is 
no more than 20% even if the most extremEl alternative 
E' (OJ) ~ EO to the nondispersive approximation is made. 
Furthermore, E' (OJ) ~ Eo and E" (OJ) ~ 0 on the bottom 
RHS of Eq. (48) produce a change of 25/9 compared with 
the usual nondispersive E' (0) ~E .. , E'l (OJ) ~ O. Thus, 
use of the nondispersive approximation in evaluating 
Eq. (48) should be accurate to within a factor of ap
proximately 2. 

Applying Eq. (49) and the nondispersive approxima
tion to Eq. (48) gives 

_.! ( f.l2 ) ( g/2 ) 
- 3 EookTa3 E .. kTb3 

x (Sin28ri'J fa" C1 free(t)COSOJtdt) (51) 

The time integral in this equation can be represented 
as34 

~ J~" C1 froe(t) cosOJt dt : (cos2 cf> Ii(OJ) +t sin2 cf> 

x (Ii(OJ - O~) + Ii(OJ+ O~»)' , 
(52) 

where cf> is the angle between the solvent molecule sym
metry axis and angular momentum and O~ denotes the 
dummy angular velocity variable of the solvent mole
cules. ( )' denotes the Boltzmann average over cf> and 
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2420 D. R. A. McMahon: Polar rotational relaxation 

!2j. The nonresonant component of Eq. (52) makes no 
contribution to Eq. (51). Incorporating Eq. (52) in Eq. 
(51), we find 

_1 "'" !!. ( Ii ) ( f.L'2 ) 
TJD(O) - 6 EookTa3 EookTb3 

X «sin2e sin2¢ !2~ o(!2J - !2j)/) • (53) 

The evaluation of the remaining averages over the 
solute and solvent distribution functions is described in 
the Appendix. The general result can be written in 
dimensionless form, 

1 1/2 ---r-.,.. ~ _11_ .\3/2(1 +.\)-7/2 
WL TJD(O) 3 

( 1/ ) ( fJ./2 ) x EookTa3 EookTb3 K(p, q, .\)J(p, q), 

(54) 

where .\ = (IL/If). The values of p and q and the func
tions K(p, q, .\) and J(p, q) depend upon the signs of the 
quantities ~ = ilL /111 ) - 1 and e = (I UI:) - 1. The results 
are summarized below. 

(i) ~;;" 0, ~/;;" 0 or ~ "" 0, e "" 0 

q 2 = [ ~ [A (1 + A)-I (1 + ~.\ (1 + A)-l)-l , 

P 2 = [ ~' [ (1 + A)-I (1 + ~' (1 + A)-I)-I, 

K(p, q, .\) =(1 ±.\p2)1/2 (.\±q2)1/2 , 

(55a) 

(55b) 

(55c) 

J(p, q) = (p~)2 [(3(Pq)2~p2~q2 +i) arc~;(pq) 

_i(1_(Pq)2)1/2(P2P2~2q2)] • (56) 

The upper signs apply when both ~ and ~' are positive 
and the lower Signs apply when both are negative. 

(ii) ~;;" 0, ("" 0 or ~ "" 0, ~/;;" 0 

p2 and q2 are as defined in Eqs. (55a) and (55b): 

K(p, q, .\) = (P .\p2)1/2(.\±q2)1/2 , 

J(p, q)= (p~)2 [(3(Pq)2±q2~p2_i) arcsinh(pq) 
pq 

(57) 

+H1 +(pq)2)1/2(l±2p2~ 2q2)]. (58) 

The upper signs apply to ~;;" 0, (""0, and the lower 
signs apply to ~ "" 0, (;;" O. 

The simplest results are obtained for linear rotors 
~ ="" and spherical tops ~ =0. These two cases may be 
calculated from first principles using much simpler in
tegrals than in the general case and serve as a useful 
check upon the above results. For a pure gas of rotors 
we find A=l, q2::1, p2=1, and 

11(11/2)1/2 

16 

11(11/2)1/2 ((EO - E .. )(2Eo + Eoo»)2 . (59a) 
16 3Eo Eoo 

For a pure gas of spherical top molecules A = 1, q 2 - 0, 
p2_0, and 

1 5(11/2)1/2 
-

WL TJD(O) 36 

5(11/2)1/2 ((Eo - Eoo)(2Eo + Eoo»)2 
36 3Eo Eoo 

(59b) 

These equations exhibit a quadratic dependence of 
l/TJD(O) upon the denSity, and this is representative of 
the many body nature of dielectriC friction. Also, 
l/TJD(O) is proportional to WL, so that the dielectriC 
friction effect is largest for small polar molecules of 
small moment of inertia I L. The rate of electromagnetic 
work performed by a rotating molecule on its dielectric 
environment is greater for a faster rotating molecule. 
The critical fourth power dependence On f.L indicates 
that a small factor of 2 in the value of J.L changes l/TJD(O) 
by a factor of 16. Finally, dielectric friction is greater 
by the factor 911/20 ~ 1.41 for rotors than for spherical 
tops of equal electric dipole moment. This is mainly 
because the whole of !J. is effective in dielectriC friction 
for rotors, whereas for spheres the part of !J. parallel 
to !2 J at any time is ineffective in dielectriC friction. 

The limiting validity of the theory is WL TJL (0) ~ 211. 
Taking WL TJD =211, Eoo = 1 in Eqs. (59a) and (59b) to pro
vide a rough guide, we find under these conditions EO 
= 1. 96 for rotors and Eo = 2.11 for sphericaltopmolecules. 
The number densities for highly polar molecules with 
f.L = 1. 5 D are respectively 3.53 x 1021 cm-3 and 4.20 
x 1021 cm-3 at 300 OK, which are typical of critical point 
number densities. The condition WLTJs(0)~211 should 
occur in the same density range, suggesting that di
electric friction for highly compressed, strongly polar 
gases may be as important for rotational relaxation as 
intermolecular collisions. For example, measurements 
on compressed CF4 where collision damping alone oc
curs gives at 273 OK and n ~ 2. 8X 1021 cm-3 the result 
WL TJ s =4.8. 35 For CH3D dissolved in CH4 gas at 100 bar 
or n ~ 2. 7 X 1021 cm-3 at 310 OK gives WL TJs(O) = 7.1. 36 

Dielectric friction should become well apparent in the 
rotational relaxation rate at n"" 2 x 1021 cm-3 as a qua
dratic density dependence which varies with tempera
ture as (WL TJ S (0))-1 IT T -2. Whereas the dielectric fric
tion decreases with increaSing temperature, the short 
range collisional contribution should increase with 
rising temperature. 

Another conceivable approach towards distinguishing 
the dielectric friction and the short range collision con
tributions to the angular momentum relaxation rate is 
to compare two or more different isotopes with greatly 
different moments of inertia. Suitable candidates may 
be the hydrogen halides HX and the deuterated halides 
DX. These differ in h by a factor near 2, and thus di
electric friction should be less in the deuterated case 
by a factor ~ 0.707. 

A further approach is to compare mixtures of different 
isotopes. Consider for instance the highly polar rotors 
the hydrogen halides. Let X and Y denote the solute and 
solvent molecules, respectively. We denote TJD(X, Y) 
as the dielectric friction relaxation time of molecules X 
in molecules Y acting as the solvent gas. We then get 
from Eqs. (54), (55c), and (56) for p2 = q2 = 1 
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1 

where 

and 

_ 25/2 >.(X, Y) 
F(X, Y) - (1 + >. (X, y)5IZ 

>.(X, Y) =h(X)/Il.(Y) • 

( 
j.L2 ) 2 

E", kT as F(X, Y) , 

(60a) 

(60b) 

F(X, X) = 1, and so F(X, Y) denotes the relative effect 
of isotope mixing. 

As a specific example conSider the highly polar mole
cules HF and DF with j.L =1. 82 D. We have Il.(HF) 
= 1. 362x 10-40 gcm2 and Il.(DF) =2. 577X 10-40 gcm2

• 37 
Thus, >.(HF, HF) =>.(DF, DF) =1, >.(HF, DF) =0. 528, 
>.(DF, HF)=1.893, and we have from Eq. (60b), F(HF, 
HF) =F(DF, DF) = 1, F(HF, DF) =0. 752, and F(DF, HF) 
=1.035. Thus HF in predominantly DF gas has a 25% 
smaller dielectric friction effect than in pure HF gas. 
Comparing DF in HF solvent with pure DF produces no 
significant change. Pure HF compared with pure DF has 
factor >.1/2(DF, HF)=1.38 more dielectric friction. To 
get some idea of the absolute values of (Wl.(X) T.TD(X, y»-l 
we need to take a temperature larger than the critical 
temperature Tc =461 OK and a suitable number denSity, 
say, 2X1021 cm-3 .. UsingE..,=1, J.L=1.82D, T=473 oK, 
we get (wl.HF) TJD(HF, y)-1~0.044 F(HF, Y). For Y=HF 
this is 30% of the limiting condition (wl.(HF» TJl.(HF, 
HF»-l ~ (27T)-1 =0.16. In contrast, the slightly less polar 
molecule HCI with j.L =1.08 D, T = Tc =325 OK, and n =2 
x 1021 cm-3 gives (wl.(HCl) TJD(HCI, y)-l ~ O. 012 F(HCI, Y), 
which is a large reduction by factor 0.27 relative to HF 
illustrating the critical dependence on the molecular di
pole moment. To illustrate the importance of having 
small molecules of small collisional damping and small 
moments of inertia, consider fluorobenzene with j.L = 1. 60 
D and h =6. 96x10-38 gcm2. At T =350 DC and n=1. 2 
x 1021 cm-3 it is found that (Wl. TJl. (0»-1 ~ 0.29,38 which is 
reasonably close to but exceeds the (27T)-1 ~ 0.16 limit 
for our dielectric friction theory. Nevertheless we ob
tain (Wl. T.T D (0»-1 ~ O. 004 only and thus negligible dielectric 
friction in this case. 

An interesting facet of the dielectric friction problem 
is the Eq. (60b) maximum of F(X, Y) at >.(X, Y) =3/2. 
This may be interpreted as a long range rotational 
resonance effect where the dielectric friction effect is 
greatest when the solute molecule's angular frequency 
is in near resonance with the absorption peak of the di
electric solvent. Molecular rotation significantly de
tuned either side of the solvent absorption peak has much 
less dielectric frictional damping. 

VI. DISCUSSION 

The major qualitative conclusion of this paper is that 
in general the first order approximation to dielectric 
friction is inadequate. For strongly hindered rotation 
such as in dense gases and in liquids, the first order 
theory is accurate at high frequencies but becomes pro
gressively less accurate as the frequency is decreased. 
At the lowest frequencies this effort may be roughly 
represented as a deviation by the factor yeo) as dis-

cussed in Sec. IV. It is significant that the free ro
tation calculation at angluar frequency Wl. produces a 
much larger deviation from the first order theory than 
obtained using the factor 1'(0). This suggests that al
though the slow rotation approximation is not accurate 
with regard instantaneous dipole motion, it becomes 
more accurate owing to the effect of intermolecular in
teractions which slow down the net reorientation rate. 
This observation is important for the formulation of the 
theory of dipolar plasmons which employs the first or
der approximation. This theory appears to be supported 
experimentally by the results of Ascarelli, 39 although the 
results of A sfar , Chantry, Birch, and Kilp40 are less 
clear support of the dipolar plasmon hypothesis. 

The present uncertainties in the cavity theory of di
electric friction can only be cleared up by evaluating 
Eqs. (28) and (29c) for rotational relaxation theories 
with strong intermolecular interaction effects. Only 
with such developments will it be possible to check the 
accuracy of the first order theory for dipolar plasmons. 
Furthermore, to properly take into account dielectric 
friction effects over the whole frequency range of non
associative polar liquid absorption and dispersion, more 
general model solutions to the formal dielectric friction 
theory are required. The general inadequacy of the 
first order approximation may at least in part expla4t 
the failure to fit the generalized Nee-Zwanzig theories 
to the whole frequency range of some polar liquids. 31,41 

An interesting but complicating aspect of dielectric 
friction is its sensitivity to molecular reorientation 
~models, at least for orders above the first order ap
proximation. A very simple example of this can be 
given as follows. Suppose that we calculate the II. (kl (t) 
x IJ. ( .... 1) (t) required in the definition of the i\(w) equation 
(12) for a model defined by 

j.L,,(t) = j.L(cosG' -A sinG' sinwot) , 

j.Ly(t) = j.L(sinG' +A cosG' sinwot) , 

J.L~(t) =0 • 

This represents dipole OSCillatory rotation in the xy 
plane together with dipole "stretching" according to the 
relation 

J.L~(t) + J.L~(t) = J.L2 + J.L2 A2 sin2wot. 

The OSCillation is about a symmetry direction S chosen 
at arbitrary angle G' to the x axis. It is easily found that 
all IJ. m for k;;,. 1 are in the xy plane along the direction 
perpendicular to S. Thus lJ.(kl X 1J.( .... 1) =0 for k ;;"1, and 
so only the first order term exists. Thus, no matter 
how rapid the dipole rms rotation, the first order theory 
is exact for this case. This contrasts with free dipole 
rotation with fixed IIJ.(t) I, where the curvature of the ro
tational velocity path ensures that not all of the lJ.(kl are 
collinear so that the higher order terms all contribute. 
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APPENDIX 

To evaluate {(sin2 9 sin2</> S)2., 15 (0., - O~ »') it is convenient to convert this to dimensionless terms by defining the 
variables x = 0.,/ wi and y = 0 i / wL where w~ = (2kT II f)1/2 is the rms value of Of. It is also convenient to define the 
parameters ~ = (l~ I~,) -1 and ~' = (t~I,:) -1, where 1 and II denote principal axes of inertia perpendicular and parallel 
to the symmetry axes of the solute and solvent molecules all assumed to be symmetric tops. It is also useful to 
write ~ =wf2lw~. The distribution functions are, for the solute and solvent molecules, respectively, 

f (x, 9) = 21T-1/2 ~3/2(1 + ~)1/2 x 2 exp[ - ~x2(1 + ~ cos2 9)] , (Ala) 

f' (y, </» =21T-1/2 (1 + nl/a y2 exp [- y 2(1 + e cos2</»] • 

These are normalized according to 

{oJ: f (x, 9) sin9 d9 dx = 1 • 

The required average may then be written as 

{(sin29 sin2</> OZ., 15(0., _ 0,»') = W~~1/2 «sin29 sin2</> x 2c5(x - y»') 

= W~41T-l ~2(1 + ~)1/2(1 + nl/2 fa • fo• fo'" sin39 sin3</> x 6 exp [- x 2(1 + ~ + ~' cos2</> +~~ cos2 9)] dxd9 d</> • 

The integral over x may be immediately carried out using the basiC result 

(0 151T1/2 
J
o 

x6 exp[_ a2 x2]dx= 16'CT 

Combining this and Eq. (A2) with Eq. (53) leads to 

__ -= "" _1T __ (1 + )1/2(1 + ')1/2 >..2 ~ IJ. sm sm 't' 't' 1 5 1/2 ( 2 ) ( '2 ) f· f· . 39 • 3ri> d9 dri> 
W~T"D(O)- 8 ~ ~ E .. kTa E .. kTb3 

0 0 (1+~+ecosa</>+~~cosa9)1/2 

51T
1/2 

2 ( 1J.2 )( 1J.'2 ) 
= -2- ~ E .. kTa3 E .. kT b3 I(~, (, ~) , 

where the variable change cos9 =v, cos</> =u gives 

(l-uZ)(l-if)audv 
(1 +~ + ~'1} +A~va)172 

(Alb) 

(A2) 

(A3) 

(A4) 

To evaluate Eq. (A4), one must take in turn each case of ~ and ~' positive or negative. The procedure is illustrated 
here for both ~ and ( positive and the general approach and the results for other cases quoted. Set K = 1 + ~ + ~'uZ 
and (:3= (~~/K). Then we have 

I(t t' ~) _ (1 + t)1/2(1 + t')1/2 51 (1 - uZ) du S 1 (1 - if) dv 
,-" '> , - '> S 0 K772 0 (1 + /3J!)772 , 

and using the substitution {31/2 v = tan a this reduces to 

(1 (1 _ u2
) (1 4) 

I(~, e, ~) =fi (1 +~)1/2(1 +~')1/2 J
o 

--;pr (1 + (3)3/2 + (1 +(3)112 du. 

To proceed further we write 

K = (1 + ~)[1 + ~' (1 +A>-l uZ] , 

1/ = e (1 +~>-l , ~/2U = tan a , 

{3 = ~~(1 +~)-l cosZ a • 

Then we have 

, _ ~ (1 + ~)1/2(1 + ~')1/2 f. arctan ~1/2 (1 4) 
I(~, ~,~)- 15 (1+~)71I!1/if2 0 cos

5
a(1_1(lsin

2
asec

2
a) (1+13)3/2 + (1 + (3)1I2 da. 

To reduce this further set 

where 

q 2 = ~~(1 +A)-l [1 + ~~(1 +Atl]-l • 

Define also 

p 2 = 1/(1 + 1/)-1 = e (1 + ~>-1 [1 + e (1 + ~)-l ]-1 , 
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and the new dummy variable x = sina. Then we have 

, 2 (1+ AP 2)1/2(A+f)1/2 
I(~, ~ , A) = 15 Am (1 +A)f2 J(p, q) , (A5a) 

where 

1 fP ( 2 (1_p2) ) (1-:j2) 4) 
J(P,q)=p 0 (1-x2)---pr-x2(1-x2) (1_qZ7)3IZ + (1_ q 2XZ)112 dx. (A5b) 

J (p, q) can be expanded out as 

J (p, q) =[ (1-1)A(O, 3) +4A(O, 1) - (1 +p-Z)(1 -1)A(1, 3) - 4(1 +p-2)A(1, 1) +p-2(1 -1)A(2, 3)+4p-ZA(2, 1)] , 

where 

1 fP A(n m) = -, p 0 

x2" dx 

The A(n, m) are evaluated using the substitution qx=sina, giving 

1 f 3rcsin(PQ) sinz" a 
A(n, m) = ~ 0 cos",-i a da. 

The required values are 

A(O, 1) = (pq,-l arcsin(pq) , 

A(O, 3) = (1 _ (pq)Z,-l/Z , 

A(1, 1) =~q-2 [(pq,-l arcsin(pq) _ (1- (pq)Z)l/Z] , 

A(1, 3) =q-Z[(1_ (pq)2,.1/2 _ (pq,-l arcsin(pq)] , 

A(2, 3) =q-4[(1_ (pq)2)-1/2 +~ (1- (pq)Z)l/Z _~ (pq,-l arCSin(pq)] , 

A(2, 1) =~q-4a (pq,.l arcsin(pq) - (1- (pq)2)1/2 +t (1- (pq)2)1/2(1_ 2(pq)2)] • 

The result for J(p, q) is found to be Eq. (56), and the final result for the dielectric friction contribution to the 
angular momentum relaxation rate equation (54) is obtained by substituting Eq. (A5a) into Eq. (A3). 

If one or both of ~ and e are negative, the above procedure is modified only slightly, where trigonometric sub
stitutions are replaced by hyperbolic function substitutions. The results of these calculations are summarized in 
the main text of the paper. 
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