457 research outputs found
Horn Coupled Multichroic Polarimeters for the Atacama Cosmology Telescope Polarization Experiment
Multichroic polarization sensitive detectors enable increased sensitivity and
spectral coverage for observations of the Cosmic Microwave Background (CMB). An
array optimized for dual frequency detectors can provide 1.7 times gain in
sensitivity compared to a single frequency array. We present the design and
measurements of horn coupled multichroic polarimeters encompassing the 90 and
150 GHz frequency bands and discuss our plans to field an array of these
detectors as part of the ACTPol project
New SETI Sky Surveys for Radio Pulses
Berkeley conducts 7 SETI programs at IR, visible and radio wavelengths. Here
we review two of the newest efforts, Astropulse and Fly's Eye.
A variety of possible sources of microsecond to millisecond radio pulses have
been suggested in the last several decades, among them such exotic events as
evaporating primordial black holes, hyper-flares from neutron stars, emissions
from cosmic strings or perhaps extraterrestrial civilizations, but to-date few
searches have been conducted capable of detecting them.
We are carrying out two searches in hopes of finding and characterizing these
mu-s to ms time scale dispersed radio pulses. These two observing programs are
orthogonal in search space; the Allen Telescope Array's (ATA) "Fly's Eye"
experiment observes a 100 square degree field by pointing each 6m ATA antenna
in a different direction; by contrast, the Astropulse sky survey at Arecibo is
extremely sensitive but has 1/3,000 of the instantaneous sky coverage.
Astropulse's multibeam data is transferred via the internet to the computers of
millions of volunteers. These computers perform a coherent de-dispersion
analysis faster than the fastest available supercomputers and allow us to
resolve pulses as short as 400 ns. Overall, the Astropulse survey will be 30
times more sensitive than the best previous searches. Analysis of results from
Astropulse is at a very early stage.
The Fly's Eye was successfully installed at the ATA in December of 2007, and
to-date approximately 450 hours of observation has been performed. We have
detected three pulsars and six giant pulses from the Crab pulsar in our
diagnostic pointing data. We have not yet detected any other convincing bursts
of astronomical origin in our survey data. (Abridged)Comment: 9 pages, 6 figures, Accepted to Acta Astronautica "Special Issue:
Life Signatures
Current and Nascent SETI Instruments
Here we describe our ongoing efforts to develop high-performance and
sensitive instrumentation for use in the search for extra-terrestrial
intelligence (SETI). These efforts include our recently deployed Search for
Extraterrestrial Emissions from Nearby Developed Intelligent Populations
Spectrometer (SERENDIP V.v) and two instruments currently under development;
the Heterogeneous Radio SETI Spectrometer (HRSS) for SETI observations in the
radio spectrum and the Optical SETI Fast Photometer (OSFP) for SETI
observations in the optical band. We will discuss the basic SERENDIP V.v
instrument design and initial analysis methodology, along with instrument
architectures and observation strategies for OSFP and HRSS. In addition, we
will demonstrate how these instruments may be built using low-cost, modular
components and programmed and operated by students using common languages, e.g.
ANSI C.Comment: 12 pages, 5 figures, Original version appears as Chapter 2 in "The
Proceedings of SETI Sessions at the 2010 Astrobiology Science Conference:
Communication with Extraterrestrial Intelligence (CETI)," Douglas A. Vakoch,
Edito
BFORE: The B-mode Foreground Experiment
The B-mode Foreground Experiment (BFORE) is a proposed NASA balloon project
designed to make optimal use of the sub-orbital platform by concentrating on
three dust foreground bands (270, 350, and 600 GHz) that complement
ground-based cosmic microwave background (CMB) programs. BFORE will survey ~1/4
of the sky with 1.7 - 3.7 arcminute resolution, enabling precise
characterization of the Galactic dust that now limits constraints on inflation
from CMB B-mode polarization measurements. In addition, BFORE's combination of
frequency coverage, large survey area, and angular resolution enables science
far beyond the critical goal of measuring foregrounds. BFORE will constrain the
velocities of thousands of galaxy clusters, provide a new window on the cosmic
infrared background, and probe magnetic fields in the interstellar medium. We
review the BFORE science case, timeline, and instrument design, which is based
on a compact off-axis telescope coupled to >10,000 superconducting detectors.Comment: 7 pages, 4 figures, conference proceedings published in Journal of
Low Temperature Physic
Altered Tendon Characteristics and Mechanical Properties Associated with Insertional Achilles Tendinopathy
Study Design: Case-control laboratory study.
Objectives: To compare tendon characteristics (shape, composition) and mechanical properties (strain, stiffness) on the involved side of participants with insertional Achilles tendinopathy (IAT) to the uninvolved side and to controls, and to examine if severity of tendon pathology is associated with severity of symptoms during function.
Background: Despite the severity and chronicity of IAT, the quality of theoretical evidence available to guide the development of exercise interventions is low. While tendon pathology of midportion Achilles tendinopathy has been described, there are few studies specific to IAT.
Methods: Twenty individuals with unilateral IAT and 20 age- and sex-matched controls volunteered to participate. Ultrasound imaging was used to quantify changes in tendon shape (diameter) and composition (echogenicity). A combination of ultrasound and dynamometry was used to measure tendon mechanical properties (strain and stiffness) during passive ankle rotation toward dorsiflexion. Generalized estimating equations were used to examine the association between IAT, alterations in tendon properties, and participant demographics. Pearson correlation was used to examine the association between severity of tendon pathology and severity of symptoms (Victorian Institute of Sport Assessment-Achilles).
Results: The side with IAT had a larger tendon diameter (P
Conclusion: Ultrasound imaging combined with dynamometry can discriminate alterations in tendon shape, composition, and mechanics in participants with IAT. Future clinical trials for IAT may consider strategies to alter tendon characteristics and restore tendon mechanic
CCAT-prime: a novel telescope for submillimeter astronomy
The CCAT-prime telescope is a 6-meter aperture, crossed-Dragone telescope,
designed for millimeter and sub-millimeter wavelength observations. It will be
located at an altitude of 5600 meters, just below the summit of Cerro
Chajnantor in the high Atacama region of Chile. The telescope's unobscured
optics deliver a field of view of almost 8 degrees over a large, flat focal
plane, enabling it to accommodate current and future instrumentation fielding
>100k diffraction-limited beams for wavelengths less than a millimeter. The
mount is a novel design with the aluminum-tiled mirrors nested inside the
telescope structure. The elevation housing has an integrated shutter that can
enclose the mirrors, protecting them from inclement weather. The telescope is
designed to co-host multiple instruments over its nominal 15 year lifetime. It
will be operated remotely, requiring minimum maintenance and on-site activities
due to the harsh working conditions on the mountain. The design utilizes
nickel-iron alloy (Invar) and carbon-fiber-reinforced polymer (CFRP) materials
in the mirror support structure, achieving a relatively temperature-insensitive
mount. We discuss requirements, specifications, critical design elements, and
the expected performance of the CCAT-prime telescope. The telescope is being
built by CCAT Observatory, Inc., a corporation formed by an international
partnership of universities. More information about CCAT and the CCAT-prime
telescope can be found at www.ccatobservatory.org.Comment: Event: SPIE Astronomical Telescope + Instrumentation, 2018, Austin,
Texas, USA; Proceedings Volume 10700, Ground-based and Airborne Telescopes
VII; 107005X (2018
The Cosmology Large Angular Scale Surveyor
The Cosmology Large Angular Scale Surveyor (CLASS) is a four telescope array
designed to characterize relic primordial gravitational waves from inflation
and the optical depth to reionization through a measurement of the polarized
cosmic microwave background (CMB) on the largest angular scales. The
frequencies of the four CLASS telescopes, one at 38 GHz, two at 93 GHz, and one
dichroic system at 145/217 GHz, are chosen to avoid spectral regions of high
atmospheric emission and span the minimum of the polarized Galactic
foregrounds: synchrotron emission at lower frequencies and dust emission at
higher frequencies. Low-noise transition edge sensor detectors and a rapid
front-end polarization modulator provide a unique combination of high
sensitivity, stability, and control of systematics. The CLASS site, at 5200 m
in the Chilean Atacama desert, allows for daily mapping of up to 70\% of the
sky and enables the characterization of CMB polarization at the largest angular
scales. Using this combination of a broad frequency range, large sky coverage,
control over systematics, and high sensitivity, CLASS will observe the
reionization and recombination peaks of the CMB E- and B-mode power spectra.
CLASS will make a cosmic variance limited measurement of the optical depth to
reionization and will measure or place upper limits on the tensor-to-scalar
ratio, , down to a level of 0.01 (95\% C.L.)
Optical modeling and polarization calibration for CMB measurements with ACTPol and Advanced ACTPol
The Atacama Cosmology Telescope Polarimeter (ACTPol) is a polarization
sensitive upgrade to the Atacama Cosmology Telescope. Located at an elevation
of 5190 m, ACTPol measures the Cosmic Microwave Background (CMB) temperature
and polarization with arcminute-scale angular resolution. Calibration of the
detector angles is a critical step in producing maps of the CMB polarization.
Polarization angle offsets in the detector calibration can cause leakage in
polarization from E to B modes and induce a spurious signal in the EB and TB
cross correlations, which eliminates our ability to measure potential
cosmological sources of EB and TB signals, such as cosmic birefringence. We
present our optical modeling and measurements associated with calibrating the
detector angles in ACTPol.Comment: 12 pages, 8 figures, conference proceedings submitted to Proceedings
of SPIE; added reference in section 2 and merged repeated referenc
Detection of the Power Spectrum of Cosmic Microwave Background Lensing by the Atacama Cosmology Telescope
We report the first detection of the gravitational lensing of the cosmic
microwave background through a measurement of the four-point correlation
function in the temperature maps made by the Atacama Cosmology Telescope. We
verify our detection by calculating the levels of potential contaminants and
performing a number of null tests. The resulting convergence power spectrum at
2-degree angular scales measures the amplitude of matter density fluctuations
on comoving length scales of around 100 Mpc at redshifts around 0.5 to 3. The
measured amplitude of the signal agrees with Lambda Cold Dark Matter cosmology
predictions. Since the amplitude of the convergence power spectrum scales as
the square of the amplitude of the density fluctuations, the 4-sigma detection
of the lensing signal measures the amplitude of density fluctuations to 12%.Comment: 4 pages, 4 figures, replaced title and author list with version
accepted by Physical Review Letters. Likelihood code can be downloaded from
http://bccp.lbl.gov/~sudeep/ACTLensLike.htm
- …
