17,398 research outputs found

    Time transfer using NAVSTAR GPS

    Get PDF
    A time transfer unit (TTU) developed for the U.S. Naval Observatory (USNO) has consistently demonstrated the transfer of time with accuracies much better than 100 nanoseconds. A new time transfer system (TTS), the TTS 502 was developed. The TTS 502 is a relatively compact microprocessor-based system with a variety of options that meet each individual's requirements, and has the same performance as the USNO system. The time transfer performance of that USNO system and the details of the new system are presented

    Power and Racialisation: Exploring the Childhood and Educational Experiences of Four Mixed Young People (Who Identify as Having One Black and One White Parent)

    Get PDF
    This Interpretative Phenomenological Analysis study aims to explore the experiences and understandings of childhood and education of four young people who identify as having a mixed Black and White heritage. The research utilises the theoretical positions of Critical Race Theory and recognises intersectionality. Participants took part in semi-structured interviews, and analysis led to the proposal of a series of “higher-order” superordinate themes across participants. These themes included “The significance of culture/heritage”, “Mixedness as challenging constructions”, “The significance of intersectionality”, “Blackness as problematic”, “Mixedness as an identity”, “Racialised perceptions in the development of self-identity” and “The power of Educational Experience”. Implications for practice are explored through Reflecting on Educational Psychology Practice and considering how educational psychology practice might develop through these accounts with reference to specific cultural and ethnic competencies in the British Psychological Society “Standards for the accreditation of Educational Psychology Training” (British Psychological Society, 2019)

    Distinguishing coherent atomic processes using wave mixing

    Full text link
    We are able to clearly distinguish the processes responsible for enhanced low-intensity atomic Kerr nonlinearity, namely coherent population trapping and coherent population oscillations in experiments performed on the Rb D1 line, where one or the other process dominates under appropriate conditions. The potential of this new approach based on wave mixing for probing coherent atomic media is discussed. It allows the new spectral components to be detected with sub-kHz resolution, which is well below the laser linewidth limit. Spatial selectivity and enhanced sensitivity make this method useful for testing dilute cold atomic samples.Comment: 9 pages, 5 figure

    Close pairs of galaxies with different activity levels

    Full text link
    We selected and studied 180 pairs with dV < 800 km/s and Dp < 60 kpc containing Markarian (MRK) galaxies to investigate the dependence of galaxies' integral parameters, star-formation (SF) and active galactic nuclei (AGN) properties on kinematics of pairs, their structure and large-scale environments. Projected radial separation Dp and perturbation level P are better measures of interaction strength than dV. The latter correlates with the density of large-scale environment and with the morphologies of galaxies. Both galaxies in a pair are of the same nature, the only difference is that MRK galaxies are usually righter than their neighbors. Specific star formation rates (SSFR) of galaxies in pairs with smaller Dp or dV is in average 0.5 dex higher than that of galaxies in pairs with larger Dp or dV. Closeness of a neighbor with the same and later morphological type increases the SSFR, while earlier-type neighbors do not increase SSFR. Major interactions/mergers trigger SF and AGN more effectively than minor ones. The fraction of AGNs is higher in more perturbed pairs and pairs with smaller Dp. AGNs typically are in stronger interacting systems than star-forming and passive galaxies. There are correlations of both SSFRs and spectral properties of nuclei between pair members.Comment: 4 pages, 3 figures. arXiv admin note: substantial text overlap with arXiv:1310.024

    Close neighbors of Markarian galaxies. II. Statistics and discussions

    Full text link
    According to the database from the first paper, we select 180 pairs with dV < 800 km/s and Dp < 60 kpc containing Markarian (MRK) galaxies. We study the dependence of galaxies integral parameters, star-formation (SF) and active galactic nuclei (AGN) properties on kinematics of pairs, their structure and large-scale environments. Following main results were obtained: projected radial separation Dp between galaxies correlates with the perturbation level P of the pairs. Both parameters do not correlate with line-of-sight velocity difference dV of galaxies. Dp and P are better measures of interaction strength than dV. The latter correlates with the density of large-scale environment and with the morphologies of galaxies. Both galaxies in a pair are of the same nature, the only difference is that MRK galaxies are usually brighter than their neighbors in average by 0.9 mag. Specific star formation rates (SSFR) of galaxies in pairs with smaller Dp or dV is in average 0.5 dex higher than that of galaxies in pairs with larger Dp or dV. Closeness of a neighbor with the same and later morphological type increases the SSFR, while earlier-type neighbors do not increase SSFR. Major interactions/mergers trigger SF and AGN more effectively than minor ones. The fraction of AGNs is higher in more perturbed pairs and pairs with smaller Dp. AGNs typically are in stronger interacting systems than star-forming and passive galaxies. There are correlations of both SSFRs and spectral properties of nuclei between pair members.Comment: 13 pages, 8 figures, 2 table

    Evolution and emergence of novel human infections

    Get PDF
    Some zoonotic pathogens cause sporadic infection in humans but rarely propagate further, while others have succeeded in overcoming the species barrier and becoming established in the human population. Adaptation, driven by selection pressure in human hosts, can play a significant role in allowing pathogens to cross this species barrier. Here we use a simple mathematical model to study potential epidemiological markers of adaptation. We ask: under what circumstances could ongoing adaptation be signalled by large clusters of human infection? If a pathogen has caused hundreds of cases but with little transmission, does this indicate that the species barrier cannot be crossed? Finally, how can case reports be monitored to detect an imminent emergence event? We distinguish evolutionary scenarios under which adaptation is likely to be signalled by large clusters of infection and under which emergence is likely to occur without any prior warning. Moreover, we show that a lack of transmission never rules out adaptability, regardless of how many zoonoses have occurred. Indeed, after the first 100 zoonotic cases, continuing sporadic zoonotic infections without onward, human-to-human transmission offer little extra information on pathogen adaptability. Finally, we present a simple method for monitoring outbreaks for signs of emergence and discuss public health implications

    Infrared images of merging galaxies

    Get PDF
    Infrared imaging of interacting galaxies is especially interesting because their optical appearance is often so chaotic due to extinction by dust and emission from star formation regions, that it is impossible to locate the nuclei or determine the true stellar distribution. However, at near-infrared wavelengths extinction is considerably reduced, and most of the flux from galaxies originates from red giant stars that comprise the dominant stellar component by mass. Thus near infrared images offer the opportunity to study directly components of galactic structure which are otherwise inaccessible. Such images may ultimately provide the framework in which to understand the activity taking place in many of the mergers with high Infrared Astronomy Satellite (IRAS) luminosities. Infrared images have been useful in identifying double structures in the nuclei of interacting galaxies which have not even been hinted at by optical observations. A striking example of this is given by the K images of Arp 220. Graham et al. (1990) have used high resolution imaging to show that it has a double nucleus coincident with the radio sources in the middle of the dust lane. The results suggest that caution should be applied in the identification of optical bright spots as multiple nuclei in the absence of other evidence. They also illustrate the advantages of using infrared imaging to study the underlying structure in merging galaxies. The authors have begun a program to take near infrared images of galaxies which are believed to be mergers of disk galaxies because they have tidal tails and filaments. In many of these the merger is thought to have induced exceptionally luminous infrared emission (cf. Joseph and Wright 1985, Sanders et al. 1988). Although the optical images of the galaxies show spectacular dust lanes and filaments, the K images all have a very smooth distribution of light with an apparently single nucleus
    corecore