8,128 research outputs found

    Structural parameters for globular clusters in M31 and generalizations for the fundamental plane

    Full text link
    The structures of globular clusters (GCs) reflect their dynamical states and past histories. High-resolution imaging allows the exploration of morphologies of clusters in other galaxies. Surface brightness profiles from new Hubble Space Telescope observations of 34 globular clusters in M31 are presented, together with fits of several different structural models to each cluster. M31 clusters appear to be adequately fit by standard King models, and do not obviously require alternate descriptions with relatively stronger halos, such as are needed to fit many GCs in other nearby galaxies. The derived structural parameters are combined with corrected versions of those measured in an earlier survey to construct a comprehensive catalog of structural and dynamical parameters for M31 GCs with a sample size similar to that for the Milky Way. Clusters in M31, the Milky Way, Magellanic Clouds, Fornax dwarf spheroidal and NGC 5128 define a very tight fundamental plane with identical slopes. The combined evidence for these widely different galaxies strongly reinforces the view that old globular clusters have near-universal structural properties regardless of host environment.Comment: AJ in press; 59 pages including 16 figure

    Neutrino-Lepton Masses, Zee Scalars and Muon g-2

    Get PDF
    Evidence for neutrino oscillations is pointing to the existence of tiny but finite neutrino masses. Such masses may be naturally generated via radiative corrections in models such as the Zee model where a singlet Zee-scalar plays a key role. We minimally extend the Zee model by including a right-handed singlet neutrino \nu_R. The radiative Zee-mechanism can be protected by a simple U(1)_X symmetry involving only the \nu_R and a Zee-scalar. We further construct a class of models with a single horizontal U(1)_FN (a la Frogatt-Nielsen) such that the mass patterns of the neutrinos and leptons are naturally explained. We then analyze the muon anomalous magnetic moment (g-2) and the flavor changing \mu --> e\gamma decay. The \nu_R interaction in our minimal extension is found to induce the BNL g-2 anomaly, with a light charged Zee-scalar of mass 100-300 GeV.Comment: Version for Phys. Rev. Lett. (typos corrected, minor refinements

    Using a conceptual framework during learning attenuates the loss of expert-type knowledge structure

    Get PDF
    BACKGROUND: During evolution from novice to expert, knowledge structure develops into an abridged network organized around pathophysiological concepts. The objectives of this study were to examine the change in knowledge structure in medical students in one year and to investigate the association between the use of a conceptual framework (diagnostic scheme) and long-term knowledge structure. METHODS: Medical students' knowledge structure of metabolic alkalosis was studied after instruction and one year later using concept-sorting. Knowledge structure was labeled 'expert-type' if students shared ≥ 2 concepts with experts and 'novice-type' if they shared < 2 concepts. Conditional logistic regression was used to study the association between short-term knowledge structure, the use of a diagnostic scheme and long-term knowledge structure. RESULTS: Thirty-four medical students completed the concept-sorting task on both occasions. Twenty-four used a diagnostic scheme for metabolic alkalosis. Short-term knowledge structure was not a correlate of long-term knowledge structure, whereas use of a diagnostic scheme was associated with increased odds of expert-type long-term knowledge structure (odds ratio 12.6 [1.4, 116.0], p = 0.02). There was an interaction between short-term knowledge structure and the use of a diagnostic scheme. In the group who did not use a diagnostic scheme the number of students changing from expert-type to novice-type was greater than vice versa (p = 0.046). There was no significant change in the group that used the diagnostic scheme (p = 0.6). CONCLUSION: The use of a diagnostic scheme by students may attenuate the loss of expert-type knowledge structure

    A universal velocity distribution of relaxed collisionless structures

    Full text link
    Several general trends have been identified for equilibrated, self-gravitating collisionless systems, such as density or anisotropy profiles. These are integrated quantities which naturally depend on the underlying velocity distribution function (VDF) of the system. We study this VDF through a set of numerical simulations, which allow us to extract both the radial and the tangential VDF. We find that the shape of the VDF is universal, in the sense that it depends only on two things namely the dispersion (radial or tangential) and the local slope of the density. Both the radial and the tangential VDF's are universal for a collection of simulations, including controlled collisions with very different initial conditions, radial infall simulation, and structures formed in cosmological simulations.Comment: 13 pages, 6 figures; oversimplified analysis corrected; changed abstract and conclusions; significantly extended discussio

    The Evolution of PSR J0737-3039B and a Model for Relativistic Spin Precession

    Full text link
    We present the evolution of the radio emission from the 2.8-s pulsar of the double pulsar system PSR J0737-3039A/B. We provide an update on the Burgay et al. (2005) analysis by describing the changes in the pulse profile and flux density over five years of observations, culminating in the B pulsar's radio disappearance in 2008 March. Over this time, the flux density decreases by 0.177 mJy/yr at the brightest orbital phases and the pulse profile evolves from a single to a double peak, with a separation rate of 2.6 deg/yr. The pulse profile changes are most likely caused by relativistic spin precession, but can not be easily explained with a circular hollow-cone beam as in the model of Clifton & Weisberg (2008). Relativistic spin precession, coupled with an elliptical beam, can model the pulse profile evolution well. This particular beam shape predicts geometrical parameters for the two bright orbital phases which are consistent and similar to those derived by Breton et al. (2008). However, the observed decrease in flux over time and B's eventual disappearance cannot be easily explained by the model and may be due to the changing influence of A on B.Comment: 20 pages, 18 figures, Accepted by ApJ on 2 August 201

    Gravitational wave astronomy with the SKA

    Full text link
    On a time scale of years to decades, gravitational wave (GW) astronomy will become a reality. Low frequency (nanoHz) GWs are detectable through long-term timing observations of the most stable pulsars. Radio observatories worldwide are currently carrying out observing programmes to detect GWs, with data sets being shared through the International Pulsar Timing Array project. One of the most likely sources of low frequency GWs are supermassive black hole binaries (SMBHBs), detectable as a background due to a large number of binaries, or as continuous or burst emission from individual sources. No GW signal has yet been detected, but stringent constraints are already being placed on galaxy evolution models. The SKA will bring this research to fruition. In this chapter, we describe how timing observations using SKA1 will contribute to detecting GWs, or can confirm a detection if a first signal already has been identified when SKA1 commences observations. We describe how SKA observations will identify the source(s) of a GW signal, search for anisotropies in the background, improve models of galaxy evolution, test theories of gravity, and characterise the early inspiral phase of a SMBHB system. We describe the impact of the large number of millisecond pulsars to be discovered by the SKA; and the observing cadence, observation durations, and instrumentation required to reach the necessary sensitivity. We describe the noise processes that will influence the achievable precision with the SKA. We assume a long-term timing programme using the SKA1-MID array and consider the implications of modifications to the current design. We describe the possible benefits from observations using SKA1-LOW. Finally, we describe GW detection prospects with SKA1 and SKA2, and end with a description of the expectations of GW astronomy.Comment: 19 pages, 3 figures, to be published in: "Advancing Astrophysics with the Square Kilometre Array", Proceedings of Science, PoS(AASKA14)03

    Upper Limits On Periodic, Pulsed Radio Emission from the X-Ray Point Source in Cassiopeia A

    Get PDF
    The Chandra X-ray Observatory recently discovered an X-ray point source near the center of Cassiopeia A, the youngest known Galactic supernova remnant. We have conducted a sensitive search for radio pulsations from this source with the Very Large Array, taking advantage of the high angular resolution of the array to resolve out the emission from the remnant itself. No convincing signatures of a dispersed, periodic source or of isolated dispersed pulses were found, whether for an isolated or a binary source. We derive upper limits of 30 and 1.3 mJy at 327 and 1435 MHz for the phase-averaged pulsed flux density from this source. The corresponding luminosity limits are lower than those for any pulsar with age less than 10^4 years. The sensitivities of our search to single pulses were 25 and 1.0 Jy at 327 and 1435 MHz. For comparison, the Crab pulsar emits roughly 80 pulses per minute with flux densities greater than 100 Jy at 327 MHz and 8 pulses per minute with flux densities greater than 50 Jy at 1435 MHz. These limits are consistent with the suggestion that the X-ray point source in Cas A adds to the growing number of neutron stars which are not radio pulsars.Comment: accepted by ApJ Letter

    Explicit Integration of the Full Symmetric Toda Hierarchy and the Sorting Property

    Full text link
    We give an explicit formula for the solution to the initial value problem of the full symmetric Toda hierarchy. The formula is obtained by the orthogonalization procedure of Szeg\"{o}, and is also interpreted as a consequence of the QR factorization method of Symes \cite{symes}. The sorting property of the dynamics is also proved for the case of a generic symmetric matrix in the sense described in the text, and generalizations of tridiagonal formulae are given for the case of matrices with 2M+12M+1 nonzero diagonals.Comment: 13 pages, Latex
    corecore