904 research outputs found

    On epidemiology and geographic information systems: a review and discussion of future directions

    Full text link
    Geographic information systems are powerful automated systems for the capture, storage, retrieval, analysis, and display of spatial data. While the systems have been in development for more than 20 years, recent software has made them substantially easier to use for those outside the field. The systems offer new and expanding opportunities for epidemiology because they allow an informed user to choose between options when geographic distributions are part of the problem. Even when used minimally, these systems allow a spatial perspective on disease. Used to their optimum level, as tools for analysis and decision making, they are indeed a new information management vehicle with a rich potential for public health and epidemiology

    Fourier-transform electrospray instrumentation for tandem high-resolution mass spectrometry of large molecules

    Get PDF
    AbstractMass spectrometry instrumentation providing unit resolution and 10-ppm mass accuracy for molecules larger than 10 kDa was first reported in 1991. This instrumentation has now been improved with a 6.2-T magnet replacing that of 2.8 T, a more efficient vacuum system, ion injection with controlled ion kinetic energies, accumulated ion trapping with an open-cylindrical ion cell, acquisition of 2M data points, and updated electrospray apparatus. The resulting capabilities include resolving power of 5 × 105 for a 29-kDa protein, less than 1-ppm mass measuring error, and dissociation of protein molecular ions to produce dozens of fragment ions whose exact masses can be identified from their mass-to-charge ratio values and isotopic peak spacing

    Coexisting stable conformations of gaseous protein ions.

    Full text link

    Patient interpretations of patient-reported outcome measures to assess bowel urgency: qualitative interviews in ulcerative colitis

    Get PDF
    Objectives: Bowel urgency is an impactful core symptom of ulcerative colitis (UC). Patient-reported outcome (PRO) questionnaires have been developed and used to assess the patient experience of this important symptom. The objective of this paper is to present evidence from qualitative research conducted to support the use and interpretation of select PRO questionnaires to assess bowel urgency related to the UC patient experience. Methods: Qualitative interviews were conducted with ten adults with a clinician-confirmed diagnosis of moderately to severely active UC. Interviews aimed to document patient interpretation of modified recall periods for the Urgency Numeric Rating Scale (Urgency NRS), two global assessments (i.e., the Patient Global Impression of Severity [PGIS] and Patient Global Impression of Change [PGIC]), and four items (Items 11, 16, 23, and 26) of the Inflammatory Bowel Disease Questionnaire (IBDQ), and explore the patient perspective of meaningful change on these questionnaires. Results: Both modified Urgency NRS versions (with 7-day or 3-day recall period) were interpreted as intended by most patients (≄ 88.9%), and slightly more than half of patients (60.0%) reported that the 7-day recall period was more relevant to their bowel urgency experience. Patients reported thinking of bowel urgency (≄ 80.0%) or bowel urgency-related accidents (70.0% of patients) when interpreting the global assessments and IBDQ items. Most patients reported a 1- to 3-point change as the smallest meaningful improvement that would be meaningful on the Urgency NRS (similar to findings on other questionnaires). Conclusion: Adults with UC can understand and respond to the Urgency NRS with modified recall periods (i.e., 7-day or 3-day), interpret the conceptual content of the PGIS, PGIC, and select IBDQ items to be inclusive of bowel urgency and bowel urgency-related accidents, and select answers representing meaningful improvements on the Urgency NRS, PGIS, PGIC, and IBDQ item response scales. These results further contribute patient-centered data to existing UC and bowel urgency research

    Liquid Chromatography Electron Capture Dissociation Tandem Mass Spectrometry (LC-ECD-MS/MS) versus Liquid Chromatography Collision-induced Dissociation Tandem Mass Spectrometry (LC-CID-MS/MS) for the Identification of Proteins

    Get PDF
    Electron capture dissociation (ECD) offers many advantages over the more traditional fragmentation techniques for the analysis of peptides and proteins, although the question remains: How suitable is ECD for incorporation within proteomic strategies for the identification of proteins? Here, we compare LC-ECD-MS/MS and LC-CID-MS/MS as techniques for the identification of proteins.Experiments were performed on a hybrid linear ion trap–Fourier transform ion cyclotron resonance mass spectrometer. Replicate analyses of a six-protein (bovine serum albumin, apo-transferrin,lysozyme, cytochrome c, alcohol dehydrogenase, and ÎČ-galactosidase) tryptic digest were performed and the results analyzed on the basis of overall protein sequence coverage and sequence tag lengths within individual peptides. The results show that although protein coverage was lower for LC-ECDMS/MS than for LC-CID-MS/MS, LC-ECD-MS/MS resulted in longer peptide sequence tags,providing greater confidence in protein assignment

    Efficiency of Collisionally-activated dissociation and 193-nm photodissociation of peptide ions in fourier transform mass spectrometry

    Get PDF
    AbstractFor tandem mass spectrometry, the Fourier transform instrument exhibits advantages for the use of collisionally-activated dissociation (CAD). The CAD energy deposited in larger ions can be greatly increased by extending the collision time to as much as 120 s, and the efficiency of trapping and measuring CAD product ions in many times greater than the found for triple-quadrupole or magnetic sector instruments, although the increased pressure from the collision gas is an offsetting disadvantage. A novel system that uses the same laser for photodesorption of ions and their subsequent photodissociation can produce complete dissociation of larger oligopeptide ions and unusually abundant fragment ions. In comparison to CAD, much more internal energy can be deposited in the primary ions using 193-nm photons, sufficient to dissociate peptide ions of m/z > 2000. Mass spectra closely resembling ion photodissociation spectra can also be obtained by neutral photodissociation (193-nm laser irradiation of the sample) followed by ion photodesorption

    Smith-Waterman peak alignment for comprehensive two-dimensional gas chromatography-mass spectrometry

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Comprehensive two-dimensional gas chromatography coupled with mass spectrometry (GC × GC-MS) is a powerful technique which has gained increasing attention over the last two decades. The GC × GC-MS provides much increased separation capacity, chemical selectivity and sensitivity for complex sample analysis and brings more accurate information about compound retention times and mass spectra. Despite these advantages, the retention times of the resolved peaks on the two-dimensional gas chromatographic columns are always shifted due to experimental variations, introducing difficulty in the data processing for metabolomics analysis. Therefore, the retention time variation must be adjusted in order to compare multiple metabolic profiles obtained from different conditions.</p> <p>Results</p> <p>We developed novel peak alignment algorithms for both homogeneous (acquired under the identical experimental conditions) and heterogeneous (acquired under the different experimental conditions) GC × GC-MS data using modified Smith-Waterman local alignment algorithms along with mass spectral similarity. Compared with literature reported algorithms, the proposed algorithms eliminated the detection of landmark peaks and the usage of retention time transformation. Furthermore, an automated peak alignment software package was established by implementing a likelihood function for optimal peak alignment.</p> <p>Conclusions</p> <p>The proposed Smith-Waterman local alignment-based algorithms are capable of aligning both the homogeneous and heterogeneous data of multiple GC × GC-MS experiments without the transformation of retention times and the selection of landmark peaks. An optimal version of the SW-based algorithms was also established based on the associated likelihood function for the automatic peak alignment. The proposed alignment algorithms outperform the literature reported alignment method by analyzing the experiment data of a mixture of compound standards and a metabolite extract of mouse plasma with spiked-in compound standards.</p

    The care of patients with varicose veins and associated chronic venous diseases: Clinical practice guidelines of the Society for Vascular Surgery and the American Venous Forum

    Get PDF
    The Society for Vascular Surgery (SVS) and the American Venous Forum (AVF) have developed clinical practice guidelines for the care of patients with varicose veins of the lower limbs and pelvis. The document also includes recommendations on the management of superficial and perforating vein incompetence in patients with associated, more advanced chronic venous diseases (CVDs), including edema, skin changes, or venous ulcers. Recommendations of the Venous Guideline Committee are based on the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) system as strong (GRADE 1) if the benefits clearly outweigh the risks, burden, and costs. The suggestions are weak (GRADE 2) if the benefits are closely balanced with risks and burden. The level of available evidence to support the evaluation or treatment can be of high (A), medium (B), or low or very low (C) quality. The key recommendations of these guidelines are: We recommend that in patients with varicose veins or more severe CVD, a complete history and detailed physical examination are complemented by duplex ultrasound scanning of the deep and superficial veins (GRADE 1A). We recommend that the CEAP classification is used for patients with CVD (GRADE 1A) and that the revised Venous Clinical Severity Score is used to assess treatment outcome (GRADE 1B). We suggest compression therapy for patients with symptomatic varicose veins (GRADE 2C) but recommend against compression therapy as the primary treatment if the patient is a candidate for saphenous vein ablation (GRADE 1B). We recommend compression therapy as the primary treatment to aid healing of venous ulceration (GRADE 1B). To decrease the recurrence of venous ulcers, we recommend ablation of the incompetent superficial veins in addition to compression therapy (GRADE 1A). For treatment of the incompetent great saphenous vein (GSV), we recommend endovenous thermal ablation (radiofrequency or laser) rather than high ligation and inversion stripping of the saphenous vein to the level of the knee (GRADE 1B). We recommend phlebectomy or sclerotherapy to treat varicose tributaries (GRADE 1B) and suggest foam sclerotherapy as an option for the treatment of the incompetent saphenous vein (GRADE 2C). We recommend against selective treatment of perforating vein incompetence in patients with simple varicose veins (CEAP class C2; GRADE 1B), but we suggest treatment of pathologic perforating veins (outward flow duration ≄500 ms, vein diameter ≄3.5 mm) located underneath healed or active ulcers (CEAP class C5-C6; GRADE 2B). We suggest treatment of pelvic congestion syndrome and pelvic varices with coil embolization, plugs, or transcatheter sclerotherapy, used alone or together (GRADE 2B)

    Effects of Charge State and Cationizing Agent on the Electron Capture Dissociation of a Peptide

    Get PDF
    Electron capture dissociation (ECD) is a promising method for de novo sequencing proteins and peptides and for locating the positions of labile posttranslational modifications and binding sites of noncovalently bound species. We report the ECD of a synthetic peptide containing 10 alanine residues and 6 lysine residues uniformly distributed across the sequence. ECD of the (M + 2H) 2+ produces a limited range of c (c 7 -c 15 ) and z (z 9 -z 15 ) fragment ions, but ECD of higher charge states produces a wider range of c (c 2 -c 15 ) and z (z 2 -z 6 , z 9 -z 15 ) ions. Although mass spectrometry (MS) and tandem mass spectrometry (MS/MS) have been used to characterize peptides for more than three decades, 1,2 the developments of electrospray ionization (ESI) 3 and matrix-assisted laser desorption/ionization 4 have dramatically expanded the size and type of molecules amenable to characterization by MS/MS. For example, ESI has been used to form intact gas-phase ions from virus particles (4.0 × 10 7 Da) 5 and DNA molecules as large as 1.2 × 10 8 Da. 6 ESI-MS and ESI-MS/MS experiments can be performed using as little as 10 -18 mol of sample. 7 For these measurements, Fourier transform (FT) MS has the advantages of ultrahigh resolution, multichannel detection, and MS n capabilities. 8,9 Dissociation methods in FTMS, including collisionally activated dissociation (CAD), 10 surface-induced dissociation, 11,12 infrared multiphoton dissociation, 13 and blackbody infrared radiative dissociation, 14,15 have been used to obtain sequence information and locations of posttranslational modifications (PTMs) in biomolecules. With these activation methods, the most labile bonds within an ion are typically cleaved. This often produces incomplete sequence coverage, the loss of PTMs, and a lack of backbone cleavages within regions enclosed by disulfide bridges. The recently developed method of electron capture dissociation (ECD), [16][17][18][19][20][21][22][23][24][25
    • 

    corecore