Abstract

Electron capture dissociation (ECD) is a promising method for de novo sequencing proteins and peptides and for locating the positions of labile posttranslational modifications and binding sites of noncovalently bound species. We report the ECD of a synthetic peptide containing 10 alanine residues and 6 lysine residues uniformly distributed across the sequence. ECD of the (M + 2H) 2+ produces a limited range of c (c 7 -c 15 ) and z (z 9 -z 15 ) fragment ions, but ECD of higher charge states produces a wider range of c (c 2 -c 15 ) and z (z 2 -z 6 , z 9 -z 15 ) ions. Although mass spectrometry (MS) and tandem mass spectrometry (MS/MS) have been used to characterize peptides for more than three decades, 1,2 the developments of electrospray ionization (ESI) 3 and matrix-assisted laser desorption/ionization 4 have dramatically expanded the size and type of molecules amenable to characterization by MS/MS. For example, ESI has been used to form intact gas-phase ions from virus particles (4.0 × 10 7 Da) 5 and DNA molecules as large as 1.2 × 10 8 Da. 6 ESI-MS and ESI-MS/MS experiments can be performed using as little as 10 -18 mol of sample. 7 For these measurements, Fourier transform (FT) MS has the advantages of ultrahigh resolution, multichannel detection, and MS n capabilities. 8,9 Dissociation methods in FTMS, including collisionally activated dissociation (CAD), 10 surface-induced dissociation, 11,12 infrared multiphoton dissociation, 13 and blackbody infrared radiative dissociation, 14,15 have been used to obtain sequence information and locations of posttranslational modifications (PTMs) in biomolecules. With these activation methods, the most labile bonds within an ion are typically cleaved. This often produces incomplete sequence coverage, the loss of PTMs, and a lack of backbone cleavages within regions enclosed by disulfide bridges. The recently developed method of electron capture dissociation (ECD), [16][17][18][19][20][21][22][23][24][25

    Similar works