7 research outputs found

    Vibration-tolerant narrow-linewidth semiconductor disk laser using novel frequency-stabilisation schemes

    Get PDF
    This paper will present developments in narrow-linewidth semiconductor-disk-laser systems using novel frequency-stabilisation schemes for reduced sensitivity to mechanical vibrations, a critical requirement for mobile applications. Narrow-linewidth single-frequency lasers are required for a range of applications including metrology and high-resolution spectroscopy. Stabilisation of the laser was achieved using a monolithic fibre-optic ring resonator with free spectral range of 181 MHz and finesse of 52 to act as passive reference cavity for the laser. Such a cavity can operate over a broad wavelength range and is immune to a wide band of vibrational frequency noise due to its monolithic implementation. The frequency noise of the locked system has been measured and compared to typical Fabry-Perot-locked lasers using vibration equipment to simulate harsh environments, and analysed here. Locked linewidths of < 40 kHz have been achieved. These developments offer a portable, narrow-linewidth laser system for harsh environments that can be flexibly designed for a range of applications

    GaN directional couplers for integrated quantum photonics

    Full text link
    Large cross-section GaN waveguides are proposed as a suitable architecture to achieve integrated quantum photonic circuits. Directional couplers with this geometry have been designed with aid of the beam propagation method and fabricated using inductively coupled plasma etching. Scanning electron microscopy inspection shows high quality facets for end coupling and a well defined gap between rib pairs in the coupling region. Optical characterization at 800 nm shows single-mode operation and coupling-length-dependent splitting ratios. Two photon interference of degenerate photon pairs has been observed in the directional coupler by measurement of the Hong-Ou-Mandel dip with 96% visibility.Comment: 4 pages, 5 figure

    Photonic integration of lithium niobate micro-ring resonators onto silicon nitride waveguide chips by transfer-printing

    Get PDF
    The heterogeneous integration of pre-fabricated lithium niobate photonic waveguide devices onto a silicon nitride waveguide platform via a transfer-printing approach has been demonstrated for the first time. A fabrication process was developed to make free-standing lithium niobate membrane devices compatible with back-end integration onto photonic integrated circuits. Micro-ring resonators in membrane format were lithographically defined by using laser direct writing and plasma dry etching. The lithium niobate micro-ring resonators were then transferred from their host substrate and released onto a silicon nitride waveguide chip. An all-pass ring resonator transmission spectrum was obtained in the 1.5 μm to 1.6 μm wavelength range, with a measured loaded Q-factor larger than 3.2×104
    corecore