
Hunter, Craig R. and Jones, Brynmor E. and Schlosser, Peter and 

Sørensen, Simon Toft and Strain, Michael J. and McKnight, Loyd J. 

(2018) Vibration-tolerant narrow-linewidth semiconductor disk laser 

using novel frequency-stabilisation schemes. Proceedings of SPIE, 

10515. ISSN 0277-786X , http://dx.doi.org/10.1117/12.2286063

This version is available at https://strathprints.strath.ac.uk/64545/

Strathprints is  designed  to  allow  users  to  access  the  research  output  of  the  University  of 

Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights 

for the papers on this site are retained by the individual authors and/or other copyright owners. 

Please check the manuscript for details of any other licences that may have been applied. You 

may  not  engage  in  further  distribution  of  the  material  for  any  profitmaking  activities  or  any 

commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the 

content of this paper for research or private study, educational, or not-for-profit purposes without 

prior permission or charge. 

Any correspondence concerning this service should be sent to the Strathprints administrator: 

strathprints@strath.ac.uk

The Strathprints institutional repository (https://strathprints.strath.ac.uk) is a digital archive of University of Strathclyde research 

outputs. It has been developed to disseminate open access research outputs, expose data about those outputs, and enable the 

management and persistent access to Strathclyde's intellectual output.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/159074312?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk
http://strathprints.strath.ac.uk/


An accepted author manuscript of the following research output: Hunter, C. R., Jones, B. E., Schlosser, P., Sørensen, S. T., Strain, M. J., & McKnight, L. J. (2018). 

Vibration-tolerant narrow-linewidth semiconductor disk laser using novel frequency-stabilisation schemes. Proceedings of SPIE, 10515. DOI: 10.1117/12.2286063 

Vibration-tolerant narrow-linewidth semiconductor disk laser using 

novel frequency-stabilisation schemes 

 
Craig R. Hunter*,1,2, Brynmor E. Jones1, Peter Schlosser1, Simon Toft Sørensen1, Michael J. Strain2, 

Loyd J. McKnight1 
1Fraunhofer Centre for Applied Photonics, 99 George Street, Glasgow, G1 1RD, UK 

2Institute of Photonics, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK 

 

 
ABSTRACT 

 
This paper will present developments in narrow-linewidth semiconductor-disk-laser systems using novel frequency-

stabilisation schemes for reduced sensitivity to mechanical vibrations, a critical requirement for mobile applications. 

Narrow-linewidth single-frequency lasers are required for a range of applications including metrology and high-

resolution spectroscopy. Stabilisation of the laser was achieved using a monolithic fibre-optic ring resonator with free 

spectral range of 181 MHz and finesse of 52 to act as passive reference cavity for the laser. Such a cavity can operate 

over a broad wavelength range and is immune to a wide band of vibrational frequency noise due to its monolithic 

implementation. The frequency noise of the locked system has been measured and compared to typical Fabry-Perot-

locked lasers using vibration equipment to simulate harsh environments, and analysed here. Locked linewidths of 

< 40 kHz have been achieved. These developments offer a portable, narrow-linewidth laser system for harsh 

environments that can be flexibly designed for a range of applications. 
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1. INTRODUCTION 

This paper presents developments in narrow-linewidth semiconductor-disk-laser (SDL)1,2 systems using novel frequency-

stabilisation schemes and compares them with conventional systems used for stabilisation, testing each system in harsh 

environments to emulate that which can be expected outside of a laboratory.  

Narrow-linewidth single-frequency lasers are required for a range of applications including metrology, interferometry, 

Doppler LIDAR, atomic cooling and spectroscopy. Many of these applications require narrow-linewidth lasers at a range 

of wavelengths whether for optimised transmission/detection through different media or to address specific transitions in 

specific atoms, therefore, the wavelength flexibility due to bandgap engineering of SDL systems is an attractive solution 

for a range of applications.  

SDLs can readily offer power levels beyond 1 W3 and it has been shown that more than 20 W4 is achievable for single-

frequency operation. Wavelength versatility is afforded by wide portfolio of available semiconductor materials2, with 

SDLs having been reported ranging from the UV5,6 to the mid-IR7,8. In order to further engineer these sources to provide 

the desired laser characteristics, intra-cavity elements can be deployed that allow for single-frequency operation, 

intracavity frequency conversion or modelocking. The SDL system offers a spectrally pure output without any background 

amplified spontaneous emission due to the lower gain and high quality cavity. 

Reference cavities are essential components in order to narrow the linewidth of a laser system, an essential criterion for 

many applications. The prevalent reference cavity used currently is a Fabry-Perot interferometer7–9, which is typically a 

confocal cavity formed of distinct high reflector mirrors mounted on a spacer material. Consequently, this is sensitive to 

vibrations, leading to fluctuations in the length of the cavity and therefore fluctuations in the resonant frequency of the 

reference cavity. A monolithic reference cavity, such as the fibre-cavity demonstrated here will not suffer from 

misalignment or mirror separation problems caused by vibrations, and can be operated over the full transparency range of 

silica without the need for specialised optical coatings. Furthermore, single-frequency fibre lasers routinely offer 
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linewidths below 2 kHz10 that benefit from the monolithic nature of the cavity. Therefore, the combination of the SDL and 

fibre loop offers the benefits of wavelength flexibility with frequency stability in a low-cost, compact format, ideal for 

mobile applications. 

For these applications the measurement of linewidth is critical but remains challenging. There is no standardised method 

or timescale for calculating linewidth, and linewidths have been quoted over a range of different timeframes in literature5,8, 

and can be calculated using a range of different methods5,8,11. Here we focus on calculating the linewidth by measuring the 

frequency noise power spectral density (PSD)5,9 and provide a comparison to the self-heterodyne method11. 

2. EXPERIMENTAL SETUP 

A compact, 808 nm diode-pumped SDL geometry operating at 1055 nm was developed on a 16 cm x 7 cm baseplate. The 

gain chip was a resonant multiple quantum-well InGaAs/GaAs with AlGaAs/GaAs distributed Bragg reflector. The gain 

chip was secured to a temperature controlled mount, with an intra-cavity diamond heatspreader12 bonded to the front of 

the chip for power scaling. The diamond was plane-parallel and therefore also acts as an etalon in the cavity. In order to 

passively stabilise the free-running linewidth of the SDL, all water-cooling and cooling fans were removed from the 

system. A custom designed baseplate was fabricated for the laser cavity and temperature controlled using a thermoelectric 

cooler (TEC). The 126 mm laser cavity was completed by a 5 % output coupler attached to a piezo actuator (PZT), and a 

folding mirror with a radius of curvature of 75 mm. The cavity was optimised for single-transverse-mode operation and 

kept short in order to assist with single-frequency operation. 

  

Figure 1. Schematic of set-up showing two paths for locking to the different reference cavities. OC = output coupler, PZT = 

piezo actuator, BRF = birefringent filter, HS = heatsink, BS = beamsplitter, EOM = electro-optic modulator, Ȝ/2 = half-wave 

plate, FP = Fabry-Perot Interferometer, PD = Photodiode, LO = local oscillator, PS = phase shifter, LPF = low pass filter 



 

 
 

 

Active stabilisation of the laser was achieved either by locking it to a Fabry-Perot reference cavity using the side-of-fringe 

locking technique8,9, or by locking it to a fibre-cavity using the Pound-Drever-Hall (PDH) locking technique13,14. The side-

of-fringe technique suffers from being unable to discern between fluctuations in the frequency of the laser, and fluctuations 

in the intensity of the laser itself, which will have a direct effect on the linewidth. The PDH locking technique is insensitive 

to fluctuations in the intensity of the laser. 

The fibre-cavity was assembled using low-cost commercially available components and use of a Fujikura FSM-100P+ 

fibre-splicer. The connections of a 2x2 polarisation-maintaining fibre coupler were spliced together to make a ring 

resonator. A 99:1 coupler was used to obtain a resonance suitable for locking and polarisation-maintaining fibre was used 

to prevent polarised mode-splitting caused by birefringence in stressed fibre. The fibre was stripped of its outer jacket to 

minimise internal vibrations and then secured to an aluminium baseplate using UV-cured epoxy to reduce stresses on the 

fibre-cavity.  

3. FREE RUNNING LASER OPERATION 

Single-frequency operation at 1055 nm was obtained by using an intracavity 4 mm thick quartz birefringent filter (BRF), 

as shown in Figure 2a, with output powers up to 1.8 W, a slope efficiency of 29.5 %, and a M2 of < 1.1. A coarse-tuning 

range of 20 nm was achieved by rotation of the BRF, with a mode-hop-free fine-tuning range of 1 GHz facilitated by the 

PZT. Single-frequency operation was obtained without any additional etalon owing to the short cavity length, high output 

coupling and filtering effects of the intracavity diamond and gain chip. The wavelength was monitored using a HighFinesse 

WS7 wavemeter over a period of 30 minutes and shown to have 1 GHz frequency fluctations in timescales of a second as 

displayed in Figure 2b.        

 

Figure 2. a) Single frequency operation of the SDL. b) Fluctuations in the frequency of the free running laser. 

The frequency noise PSD measurement was taken by observing the transmission through a second Fabry-Perot, and 

monitoring the fluctuations around the halfway point of its resonance. The Fabry-Perot used to observe the fluctuations 

was a Thorlabs SA200-8B, with a free-spectral range (FSR) of 1.5 GHz and Finesse of > 200. While the reference cavities 

were under duress, a Thorlabs SA210-8B, with a FSR of 10 GHz and Finesse of > 150, was used to give a greater range 

of measurement that was required due to the vibration, but at the detriment of resolution. The Fabry-Perot was held stable 

by a Thorlabs MDT693B piezo controller, and the transmission observed by a Thorlabs PDA36A amplified photodetector 

with a 20 dB gain setting. 

Using a second Fabry-Perot to monitor the fluctuations allow us to examine the system as a whole, including the reference 

cavity it is locked to. This means that any noise exhibited by the reference cavities under investigation will be apparent, 

and not just the lasers ability to stabilise to the reference cavity. The noise floor of the detector and contribution from 

intensity noise is also recorded to determine the influence on the measured linewidths. 

The data was captured by a Rohde & Schwarz RTO1044 oscilloscope, with a resolution of 500 ns and a measurement time 

of 100 ms. This was then converted into the frequency domain and the frequency noise PSD calculated. An average of ten 

runs was taken for each frequency noise PSD, averaging after the Fourier transform. The r.m.s. linewidth was calculated 



 

 
 

 

from this by integrating over a certain period, chosen for this experiment to be between 100 Hz and 1 MHz unless stated 

otherwise. The upper frequency constraint was set by the bandwidth of the measurement, with noise quicker than this 

having negligible effect on the linewidth. In this work, the low frequency was selected to provide a full picture of the 

contribution from mechanical and acoustic noise sources and relates to a linewidth over a 10 ms period.  

  

Figure 3. a) Free-running laser linewidth calculated using a self-heterodyne setup. b) Frequency noise PSD of the free-

running laser showing linewidths calculated for different bandwidths. 

The linewidth of the free-running laser was calculated from the frequency noise PSD measurement and compared to results 

acquired using a self-heterodyne setup with a 25 km delay and an 80 MHz frequency offset by an acousto-optic modulator. 

The bandwidth of the self-heterodyne measurement is limited; the lower frequency constraint was set by the fibre delay 

length to be 8 kHz, and the upper frequency constraint was set by the bandwidth of the signal analyser, the Rohde & 

Schwarz FSV40, at 400 kHz using the sample detection setting.  Over the same frequency range the linewidth was 

calculated from the frequency noise PSD to be 72 kHz, comparable to the figure of 75 kHz measured by the self-heterodyne 

technique. Over a 10 ms measurement, a linewidth of 466 kHz is calculated. This demonstrates the effect that the 

bandwidth can have on the linewidth calculation, while also displaying some of the limitations of the self-heterodyne 

measurement technique.  

4. REFERENCE CAVITY COMPARISON 

4.1 Active Stabilisation 

 

Figure 4. Transmission of the fibre-cavity. 



 

 
 

 

The transmission of the fibre-cavity is shown in Figure 4. The FSR of the fibre-cavity was calculated to be 181 MHz, with 

a Finesse of 52.  

The laser was locked to each reference cavity in turn, the frequency noise PSDs taken, and the linewidths calculated. In 

Figure 5a, the frequency noise PSD of the system using the fibre loop as a reference cavity is shown, as well as the noise 

floor of the detector and the noise introduced by fluctuations in the intensity of the laser. It is shown that the frequency 

noise PSD is limited by detector noise at frequencies above 20 kHz, though noise introduced at that magnitude would have 

little effect on the overall linewidth. It is also shown that the effect of intensity fluctuations on the measurement are 

negligible. 

 

Figure 5. a) Frequency noise PSD of the fibre-cavity showing effect of intensity noise and detector noise. b) Comparison of 

frequency noise PSDs of reference cavities. 

The frequency noise PSD for the two systems is shown to be similar above a frequency of 1 kHz, as shown in Figure 5b, 

as the lock was too slow above this. The locking bandwidth was limited by the locking electronics used, namely the PI E-

464 high voltage amplifier. However, at frequencies below this the fibre cavity is shown to operate with lower noise in the 

system. The linewidth was calculated at 36 kHz while using the fibre cavity as a reference cavity, whereas a linewidth of 

85 kHz was calculated while using the Fabry-Perot as a reference cavity.  

4.2 Vibration Testing 

The performance of each reference cavity was tested under vibration by securing it on top of a vibrating platform, the 

Controlled Vibration ED-3, and suppling this with a pink noise signal generated from Audio Architect software supplied 

with the platform. An accelerometer was attached to the cavity-baseplate to measure the response of the vibrating platform 

and confirm its operation. The following frequency noise PSD shows a comparison between the two cavities while pink 

noise with a gain of -25 dB was applied by the software. The fibre-cavity system was calculated to have a linewidth of 

876 kHz, whereas the Fabry-Perot system was shown to have a worse performance with a linewidth of 1.1 MHz. This was 

repeated for a range of different gain settings and the linewidths resulting from these are shown in Figure 6b. 



 

 
 

 

 

Figure 6. a) Frequency noise PSDs of reference cavities under -25 dB pink noise. b) Linewidths calculated from frequency 

noise PSDs for each reference cavity under a range of vibrations 

As can be seen in Figure 6a, and which was consistently witnessed across the range of experimental results, the Fabry-

Perot cavity suffers from noise introduced at 155 Hz. This was examined further by applying a sine wave of 155 Hz to the 

vibrating platform. During the experiment, it was evident that the Fabry-Perot was being excited on a resonant frequency, 

and the resulting frequency noise PSD appears to corroborate this. While the fibre-cavity system actually introduces more 

noise at 155 Hz, it has superior performance for the majority of the subsequent harmonics, as shown in Figure 7. The 

resulting linewidths were 1.8 MHz while locked to the fibre-cavity, and 2.3 MHz while locked to the Fabry-Perot.  

 

Figure 7. Frequency noise PSD of reference cavities under vibration of a 155 Hz sine wave. 

A similar test was carried out with a sine wave at 100 Hz applied to the vibrating platform. This time the system locked to 

the fibre-cavity performed worse, with a linewidth of 2.6 MHz, compared to a linewidth of 1.0 MHz resulting from the 

Fabry-Perot. It should also be noted that the fibre-loop system consistently performed worse at frequencies lower than 

100 Hz, and therefore may not be as suitable for experiments requiring a measurement time of over 10 ms without further 

stabilisation. 

4.3 Thermal stabilisation 

Each system was capable of remaining locked for over one hour, though environmental control was required by the fibre-

cavity to attain this length of lock. Insulation was used to enclose the reference cavity and successfully managed to reduce 

fluctuations in the surrounding temperature and humidity, as well as reducing airflow around the cavity. As a consequence 

of this, the temperature of the insulated area would steadily increase while the laser was coupled into the fibre-cavity, 



 

 
 

 

which manifested into a frequency drift due to thermal expansion and an increase in refractive index. The Fabry-Perot 

however, has been specifically designed to limit these effects, through use of an Invar spacing and expansion compensating 

mounts, and therefore displayed substantially less drift over extended periods.  

 

Figure 8. Long-term frequency drift of reference cavities 

Through stabilisation of the temperature of the baseplate to which the fibre-cavity is attached we have been able to show 

that this drift can be controlled. With the simple implementation of a TEC and heatsink, we were able to reduce the drift 

of the fibre-cavity to 15 MHz over a period of one hour, as shown in Figure 8. This is a clear improvement on the drift of 

almost 700 MHz witnessed before temperature control was put in place, and even compares favourably to the Fabry-Perot, 

which experienced a drift of about 30 MHz over the same timeframe. 

The thermal control of the waveguide shown here demonstrates the potential to tune the resonance position of the reference 

cavity. Through direct placement of temperature or stress controlling on the fibre it would be possible to tune this cavity 

at fast rates. 

5. CONCLUSIONS 

We have developed a novel frequency-stabilisation scheme in the form of a fibre-cavity. With thermal stabilisation in 

place, it was shown to be an able replacement for the conventional Fabry-Perot reference cavity and in some cases offers 

superior performance.  The fibre-cavity offers a broad transparency with a decoupling between the finesse and alignment. 

The fibre components are widely available commercially and are lower cost than typical dielectric coated Fabry-Perot 

cavities. It has shown reduced sensitivity to the majority of vibration tests that were carried out on it, as well as improved 

stability while in laboratory conditions.  

The combination of SDLs and monolithic reference cavities promises to offer narrow-linewidth single-frequency lasers in 

a low-cost, compact format suitable for a range of applications outwith the confines of the laboratory. The approach is 

valid at a wide range of wavelengths for which different SDL gain materials are available. Further optimisation of this 

approach including a higher Q cavity and an exploration of the most appropriate environmental shielding will harvest a 

truly vibration-insensitive reference cavity.   

 

  



 

 
 

 

REFERENCES  

 
[1]  Holm, M. a., Burns, D., Ferguson, A. I. and Dawson, M. D., “Actively stabilized single-frequency vertical-

external-cavity\nAlGaAs laser,” IEEE Photonics Technol. Lett. 11(12), 1551–1553 (1999). 

[2]  Guina, M., Rantamäki, A. and Härkönen, A., “Optically pumped VECSELsௗμ review of technology and 
progress,” J. Appl. Phys. 50(38), 383001 (2017). 

[3]  Laurain, A., Mart, C., Hader, J., Moloney, J., Kunert, B. and Stolz, W., “15W Single Frequency Optically 
Pumped Semiconductor Laser With Sub-MHz Linewidth.,” IEEE Photonics Technol. Lett. 26(2), 131–133 

(2013). 

[4]  Zhang, F., Heinen, B., Wichmann, M., Möller, C., Kunert, B., Rahimi-Iman, A., Stolz, W. and Koch, M., “A 23-

watt single-frequency vertical-external-cavity surface-emitting laser,” Opt. Express 22(11), 12817 (2014). 

[5]  Pabœuf, D., Schlosser, P. J. and Hastie, J. E., “Frequency stabilization of an ultraviolet semiconductor disk 
laser.,” Opt. Lett. 38(10), 1736–1738 (2013). 

[6]  Hastie, J. E., Morton, L. G., Kemp, A. J., Dawson, M. D., Krysa, A. B. and Roberts, J. S., “Tunable ultraviolet 
output from an intracavity frequency-doubled red vertical-external-cavity surface-emitting laser,” Appl. Phys. 
Lett. 89(6), 061114 (2006). 

[7]  Hopkins, J.-M., Maclean, A. J., Burns, D., Riis, E., Schulz, N., Rattunde, M., Manz, C., Köhler, K. and Wagner, 

J., “Tunable, Single-frequency, Diode-pumped 2.3ȝm VECSEL,” Opt. Express 15(13), 8215 (2007). 

[8]  Kaspar, S., Rattunde, M., Topper, T., Rosener, B., Manz, C., Kohler, K. and Wagner, J., “Linewidth narrowing 
and power scaling of single-frequency 2.Xௗ?? m GaSb-based semiconductor disk lasers,” IEEE J. Quantum 
Electron. 49(3), 314–324 (2013). 

[9]  Laurain, A., Mart, C., Hader, J., Moloney, J. V, Kunert, B. and Stolz, W., “Optical noise of stabilized high-

power single frequency optically pumped semiconductor laser.,” Opt. Lett. 39(6), 1573–1576 (2014). 

[10]  Cheng, Y., Kringlebotn, J. T., Loh, W. H., Laming, R. I. and Payne, D. N., “Stable single-frequency traveling-

wave fiber loop laser with integral saturable-absorber-based tracking narrow-band filter,” Opt. Lett. 20(8), 875–
877 (1995). 

[11]  Okoshi, T., Kikuchi, K. and Nakayama, A., “Novel method for high resolution measurement of laser output 
spectrum,” Electron. Lett. 16(16), 630 (1980). 

[12]  Kemp, A. J., Valentine, G. J., Hopkins, J., Hastie, J. E., Smith, S. A., Calvez, S., Dawson, M. D. and Burns, D., 

“Thermal Management in Vertical-External-Cavity-Emitting Lasers: Finite-Element Analysis of a Heatspreader 

Approach,” IEEE J. Quantum Electron. 41(2), 148–155 (2005). 

[13]  Drever, R. W. P., Hall, J. L., Kowalski, F. V., Hough, J., Ford, G. M., Munley, A. J. and Ward, H., “Laser phase 
and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983). 

[14]  Black, E. D., “An introduction to Pound–Drever–Hall laser frequency stabilization,” Am. J. Phys. 69(1), 79 

(2001). 

 

 

 

 
 


