21 research outputs found

    Associations between neonatal hypoglycaemia and brain volumes, cortical thickness and white matter microstructure in mid-childhood: An MRI study

    Get PDF
    Neonatal hypoglycaemia is a common metabolic disorder that may cause brain damage, most visible in parietooccipital regions on MRI in the acute phase. However, the long term effects of neonatal hypoglycaemia on the brain are not well understood. We investigated the association between neonatal hypoglycaemia and brain volumes, cortical thickness and white matter microstructure at 9–10 years. Children born at risk of neonatal hypoglycaemia at ≄ 36 weeks’ gestation who took part in a prospective cohort study underwent brain MRI at 9–10 years. Neonatal hypoglycaemia was defined as at least one hypoglycaemic episode (at least one consecutive blood glucose concentration < 2.6 mmol/L) or interstitial episode (at least 10 min of interstitial glucose concentrations < 2.6 mmol/L). Brain volumes and cortical thickness were computed using Freesurfer. White matter microstructure was assessed using tract-based spatial statistics. Children who had (n = 75) and had not (n = 26) experienced neonatal hypoglycaemia had similar combined parietal and occipital lobe volumes and no differences in white matter microstructure at nine years of age. However, those who had experienced neonatal hypoglycaemia had smaller caudate volumes (mean difference: − 557 mm3 , 95% confidence interval (CI), − 933 to − 182, p = 0.004) and smaller thalamus (− 0.03%, 95%CI, − 0.06 to 0.00; p = 0.05) and subcortical grey matter (− 0.10%, 95%CI − 0.20 to 0.00, p = 0.05) volumes as percentage of total brain volume, and thinner occipital lobe cortex (− 0.05 mm, 95%CI − 0.10 to 0.00, p = 0.05) than those who had not. The finding of smaller caudate volumes after neonatal hypoglycaemia was consistent across analyses of pre-specified severity groups, clinically detected hypoglycaemic episodes, and severity and frequency of hypoglycaemic events. Neonatal hypoglycaemia is associated with smaller deep grey matter brain regions and thinner occipital lobe cortex but not altered white matter microstructure in mid-childhood

    2021 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations: Summary From the Basic Life Support; Advanced Life Support; Neonatal Life Support; Education, Implementation, and Teams; First Aid Task Forces; and the COVID-19 Working Group

    Get PDF
    The International Liaison Committee on Resuscitation initiated a continuous review of new, peer-reviewed published cardiopulmonary resuscitation science. This is the fifth annual summary of the International Liaison Committee on Resuscitation International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations; a more comprehensive review was done in 2020. This latest summary addresses the most recently published resuscitation evidence reviewed by International Liaison Committee on Resuscitation task force science experts. Topics covered by systematic reviews in this summary include resuscitation topics of video-based dispatch systems; head-up cardiopulmonary resuscitation; early coronary angiography after return of spontaneous circulation; cardiopulmonary resuscitation in the prone patient; cord management at birth for preterm and term infants; devices for administering positive-pressure ventilation at birth; family presence during neonatal resuscitation; self-directed, digitally based basic life support education and training in adults and children; coronavirus disease 2019 infection risk to rescuers from patients in cardiac arrest; and first aid topics, including cooling with water for thermal burns, oral rehydration for exertional dehydration, pediatric tourniquet use, and methods of tick removal. Members from 6 International Liaison Committee on Resuscitation task forces have assessed, discussed, and debated the quality of the evidence, according to the Grading of Recommendations Assessment, Development, and Evaluation criteria, and their statements include consensus treatment recommendations or good practice statements. Insights into the deliberations of the task forces are provided in Justification and Evidence-to-Decision Framework Highlights sections. In addition, the task forces listed priority knowledge gaps for further research

    Defining treatment thresholds for neonatal hypoglycaemia—how low is too low?

    No full text

    Antenatal corticosteroids, maternal body mass index and infant morbidity within the ASTEROID trial.

    Full text link
    BACKGROUND: Antenatal corticosteroids (ACSs) administered to women before preterm birth improve neonatal health. Proportionately more women are obese or overweight in current obstetric populations than those who were included in the original trials of ACSs, and it remains uncertain if higher doses are required for such women. AIM: Our aim was to assess the association between maternal body mass index (BMI) and infant morbidity after the administration of ACSs. METHODS: In the secondary analysis of the ASTEROID trial cohort, women at risk of preterm birth at <34 weeks' gestation were randomised to betamethasone or dexamethasone. Infant outcomes were compared according to whether women were of normal weight (BMI < 25 kg/m2 ), overweight (BMI 25-29.9 kg/m2 ) or obese (BMI ≄ 30 kg/m2 ). RESULTS: Of 982 women with a singleton pregnancy and BMI data, 519 (52.9%) were of normal size, 241 (24.5%) were overweight and 222 (22.6%) were obese. Compared with infants born to women of normal weight, there was little or no difference in respiratory distress syndrome in infants born to women who were overweight (odds ratio (OR) = 0.92, 95% confidence interval (CI) 0.57, 1.49) or obese (OR = 1.44, 95% CI 0.90, 2.31). Similarly, there were no significant differences between infants born to women in the three BMI groups for other morbidities, including bronchopulmonary dysplasia, mechanical ventilation, intraventricular haemorrhage, retinopathy of prematurity, patent ductus arteriosus, necrotising enterocolitis, perinatal death or combined serious morbidity. CONCLUSIONS: Maternal body size is not associated with infant morbidity after ACS exposure. Dose adjustment for women with higher BMI is not required

    Continuous glucose monitoring in neonates: a review.

    Get PDF
    Continuous glucose monitoring (CGM) is well established in the management of diabetes mellitus, but its role in neonatal glycaemic control is less clear. CGM has provided important insights about neonatal glucose metabolism, and there is increasing interest in its clinical use, particularly in preterm neonates and in those in whom glucose control is difficult. Neonatal glucose instability, including hypoglycaemia and hyperglycaemia, has been associated with poorer neurodevelopment, and CGM offers the possibility of adjusting treatment in real time to account for individual metabolic requirements while reducing the number of blood tests required, potentially improving long-term outcomes. However, current devices are optimised for use at relatively high glucose concentrations, and several technical issues need to be resolved before real-time CGM can be recommended for routine neonatal care. These include: 1) limited point accuracy, especially at low or rapidly changing glucose concentrations; 2) calibration methods that are designed for higher glucose concentrations of children and adults, and not for neonates; 3) sensor drift, which is under-recognised; and 4) the need for dynamic and integrated metrics that can be related to long-term neurodevelopmental outcomes. CGM remains an important tool for retrospective investigation of neonatal glycaemia and the effect of different treatments on glucose metabolism. However, at present CGM should be limited to research studies, and should only be introduced into routine clinical care once benefit is demonstrated in randomised trials
    corecore