672 research outputs found
RF-MEMS switch actuation pulse optimization using Taguchi's method
Copyright @ 2011 Springer-VerlagReliability and longevity comprise two of the most important concerns when designing micro-electro-mechanical-systems (MEMS) switches. Forcing the switch to perform close to its operating limits underlies a trade-off between response bandwidth and fatigue life due to the impact force of the cantilever touching its corresponding contact point. This paper presents for first time an actuation pulse optimization technique based on Taguchi’s optimization method to optimize the shape of the actuation pulse of an ohmic RF-MEMS switch in order to achieve better control and switching conditions. Simulation results show significant reduction in impact velocity (which results in less than 5 times impact force than nominal step pulse conditions) and settling time maintaining good switching speed for the pull down phase and almost elimination of the high bouncing phenomena during the release phase of the switch
Interleukin-2 receptor and ovarian cancer.
Interleukin-2 receptor (IL-2R) can be detected in serum. We estimated the IL-2R in the serum of 78 women, of whom 30 were diagnosed as having malignant ovarian tumours, five had non ovarian tumours, one had a negative second look laparotomy, 11 had benign ovarian tumours, three had uterine fibroids and 28 were age-matched controls. The results indicated that the serum IL-2R of these patients was significantly elevated in ovarian cancer patients compared to both controls (P < 0.0001) and benign ovarian tumours (P < 0.0002). There were no significant differences in IL-2R levels between stage of disease and degree of differentiation within the ovarian tumour group
An Interface Region Imaging Spectrograph first view on Solar Spicules
Solar spicules have eluded modelers and observers for decades. Since the
discovery of the more energetic type II, spicules have become a heated topic
but their contribution to the energy balance of the low solar atmosphere
remains unknown. Here we give a first glimpse of what quiet Sun spicules look
like when observed with NASA's recently launched Interface Region Imaging
Spectrograph (IRIS). Using IRIS spectra and filtergrams that sample the
chromosphere and transition region we compare the properties and evolution of
spicules as observed in a coordinated campaign with Hinode and the Atmospheric
Imaging Assembly. Our IRIS observations allow us to follow the thermal
evolution of type II spicules and finally confirm that the fading of Ca II H
spicules appears to be caused by rapid heating to higher temperatures. The IRIS
spicules do not fade but continue evolving, reaching higher and falling back
down after 500-800 s. Ca II H type II spicules are thus the initial stages of
violent and hotter events that mostly remain invisible in Ca II H filtergrams.
These events have very different properties from type I spicules, which show
lower velocities and no fading from chromospheric passbands. The IRIS spectra
of spicules show the same signature as their proposed disk counterparts,
reinforcing earlier work. Spectroheliograms from spectral rasters also confirm
that quiet Sun spicules originate in bushes from the magnetic network. Our
results suggest that type II spicules are indeed the site of vigorous heating
(to at least transition region temperatures) along extensive parts of the
upward moving spicular plasma.Comment: 6 pages, 4 figures, accepted for publication in ApJ Letters. For
associated movies, see http://folk.uio.no/tiago/iris_spic
Evaluation of Composite Mesh for Ventral Hernia Repair
Composite mesh was associated with minimal intraabdominal adhesions, progressive in-growth of host tissue, and complete degradation of an internal polydioxanone ring that was of assistance in mesh positioning
Detection of supersonic downflows and associated heating events in the transition region above sunspots
IRIS data allow us to study the solar transition region (TR) with an
unprecedented spatial resolution of 0.33 arcsec. On 2013 August 30, we observed
bursts of high Doppler shifts suggesting strong supersonic downflows of up to
200 km/s and weaker, slightly slower upflows in the spectral lines Mg II h and
k, C II 1336 \AA, Si IV 1394 \AA, and 1403 \AA, that are correlated with
brightenings in the slitjaw images (SJIs). The bursty behavior lasts throughout
the 2 hr observation, with average burst durations of about 20 s. The locations
of these short-lived events appear to be the umbral and penumbral footpoints of
EUV loops. Fast apparent downflows are observed along these loops in the SJIs
and in AIA, suggesting that the loops are thermally unstable. We interpret the
observations as cool material falling from coronal heights, and especially
coronal rain produced along the thermally unstable loops, which leads to an
increase of intensity at the loop footpoints, probably indicating an increase
of density and temperature in the TR. The rain speeds are on the higher end of
previously reported speeds for this phenomenon, and possibly higher than the
free-fall velocity along the loops. On other observing days, similar bright
dots are sometimes aligned into ribbons, resembling small flare ribbons. These
observations provide a first insight into small-scale heating events in
sunspots in the TR.Comment: accepted by ApJ
- …