56 research outputs found

    Coupled rotor-body equations of motion hover flight

    Get PDF
    A set of linearized equations of motion to predict the linearized dynamic response of a single rotor helicopter in a hover trim condition to cyclic pitch control inputs is described. The equations of motion assume four fuselage degrees of freedom: lateral and longitudinal translation, roll angle, pitch angle: four rotor degrees of freedom: flapping (lateral and longitudinal tilt of the tip path plane), lagging (lateral and longitudinal displacement of the rotor plane center of mass); and dynamic inflow (harmonic components). These ten degrees of freedom correspond to a system with eighteen dynamic states. In addition to examination of the full system dynamics, the computer code supplied with this report permits the examination of various reduced order models. The code is presented in a specific form such that the dynamic response of a helicopter in flight can be investigated. With minor modifications to the code the dynamics of a rotor mounted on a flexible support can also be studied

    Design and numerical evaluation of full-authority flight control systems for conventional and thruster-augmented helicopters employed in NOE operations

    Get PDF
    The development and methodology is presented for development of full-authority implicit model-following and explicit model-following optimal controllers for use on helicopters operating in the Nap-of-the Earth (NOE) environment. Pole placement, input-output frequency response, and step input response were used to evaluate handling qualities performance. The pilot was equipped with velocity-command inputs. A mathematical/computational trajectory optimization method was employed to evaluate the ability of each controller to fly NOE maneuvers. The method determines the optimal swashplate and thruster input histories from the helicopter's dynamics and the prescribed geometry and desired flying qualities of the maneuver. Three maneuvers were investigated for both the implicit and explicit controllers with and without auxiliary propulsion installed: pop-up/dash/descent, bob-up at 40 knots, and glideslope. The explicit controller proved to be superior to the implicit controller in performance and ease of design

    Force-state mapping identification of nonlinear joints

    No full text
    corecore