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ABSTRACT

A set of linearized equations of motion to predict the
linearized dynamic response of a single rotor helicopter in a
hover trim condition to cyclic pitch control inputs is described.
The equations of motion assume four fuselage degrees of freedom;
lateral and longitudinal translation, roll angle, pitch angle,
four rotor degrees of freedom; flapping (lateral and longitudinal
tilt of the tip path plane), lagging (lateral and longitudinal
displacement of the rotor plane center of mass)gand dynamic
inflow (harmonic components). These ten degreé; of freedom
correspond to a system with eighteen dynamic states. In addition
to examination of the full system dynamics, the computer code
supplied with this report permits the examination of various
reduced order models. The code is presented in a specific form
such that the dynamic response of a helicopter in flight can be
investigated. As described in the report, with minor
modifications to the code the dynamics of a rotor mounted on a

flexible support can also be studied.



(

“

INTRODUCTION

The equations of motion for the linearized small
perturbation motion of a single rotor helicopter about a hovering
trim condition were formulated using a Lagrangian approach. For
a linearized investigation of the hovering flight dynamics it can
be assumed that the fuselage center of mass remains in an
horizontal plane during the disturbed motion if collective inputs
are not of interest. Vertical translation will be uncoupled from
horizontal translation and fuselage roll and pitch. Thus the
collective pitch is assumed constant at its trim value. Also as
a consequence of this assumption, the coning angle and the
average value of the induced velocity are also assumed to be
constant in the code. The influence of the tail rotor is
neglected and the yaw angle is assumed to be constant at its trim
value, as coupling of the degree of freedom will be relatively
weak near hover. Also the steady value of the lag angle is
assumed constant at its trim value. The documentation of a
larger code for hover and translational flight trim conditions
which includes the vertical and yaw degrees of freedom as well as
the tail rotor effects is nearly complete and will be available
in the near future.

The fuselage center of mass is assumed to lie on the rotor
shaft and no fuselage aerodynamics are included. Thus the hover
trim condition corresponds to zero values of longitudinal and
lateral cyclic pitch. Only the specific formulation for a

helicopter in flight is considered in this discussion. See the
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Discussion section for a deécription of modifications to the code
to examine other problems such as ground resonance.

The rotor dynamics are included in the code through the use
of multiblade coordinates. The longitudinal and lateral tilt of
the rotor plane relative to the shaft are described by the

< The lag motion is described by Yy and Yy

coordinates 8140 b1
corresponding to lateral and longitudinal displacement of the
rotor center of mass. These are the first four state variable in
the computer program. Four body coordinates are fuselage pitch

(eF), fuselage roll (¢F), lateral translation (yF) and

longitudinal translation (XF)' Note that longitudinal

translation is positive to the rear. This particular choice of
coordinate depends on the selection of the elements in the T

matrix as described below. Two state variables vC and vs

describe the dynamic inflow. Thus the displacement variables for
the full system are
{als’ b1 c s

s! Yll Yz’ eF! ¢F! yF’ XF, v , v }

The dynamic inflow variables are first order while the other
variables are second order so that there are a total of eighteen
state variables. The system equations are ordered such that the
rotor and body displacement coordinates are followed by the rotor
and body velocities and then.the dynamic inflow components. Thus
for the full systeﬁ the state variables appear in the following

order in the computer code output,



T . . .
{X.} bls, Yl’ Yz’

i - {als’ bl

S! Yl’ Yz! eFI ¢F| yF$ XF’ alsJ

. . . . T
Bps Gps Yps Xp» Vi vs}

The contrcocl variables are,

(vt

i {Als’ B1 }

S

For the reduced order system option without dynamic inflow,

the last two state variables (vc,vs) are dropped and there are

sixteen state variables.

For the quasi static option, both the rotor blade motion and
the dynamic inflow become algebraic variables and are eliminated
from the equations of motion to yield eight state variables,
describing the fuselage motion

_ . . . . T
{xqs} - {QF’ ¢F1 YF, fo GF’ ¢F1 yF’ XF}

The quasi-static case has two options, with and without dynamic
inflow.

Note that since there is no dependence in the equations of

motion on fuselage displacement (yF, xF) so in all of these cases

there will be two zero eigenvalues.

While the quasi-static model is useful for developing
physical insight, it has been shown in Reference 1 by comparison
of this theory with flight test that the rotor-body coupling and
dynamic inflow are significant in predicting the actual response
of a helicopter to cyclic pitch.

The equation of motion are formulated for an articulated

rotor helicopter with equal flap and lag hinge offset. Hingeless
5



rotor helicopter dynamics can be approximated by the addition of
springs about the flap and lag hinges. These spring constants
appear in the input file.

The rotor blade element aerodynamics are assumed linear,
i.e., the blade element 1ift coefficient is assumed to be a
linear function of blade element angle of attack and the blade
profile drag coefficient is assume constant. With these
assumptions the blade aerodynamic forces can be integrated along
the blade span to the flapping hinge and multiblade coordinates
introduced to describe the rotor motion. The dynamic inflow
model used in the computer code is described in Appendix I and is

due to Peters. Rotor angular velocity is assumed constant.



(

(

NOMENCLATURE

Rotor Geometry

GB = 90 - Als sinyg - Bls cosy + AGH + AGE

¢ = rotor blade azimuth angle measured from longitudinal axis
(xF)

90 = collective pitch assumed constant, calculated in code
(TNOT), rad.

Als’Bls = lateral and longitudinal cyclic pitch, control input
terms corresponding to lateral and longitudinal stick
deflection, radians

AeH blade pitch change due to hinge coupling

ABH dx AB + eXx Al

d* corresponds to a 63 hinge
¢X corresponds to xq hinge

AGE blade pitch change due to elastic deformation of swash

plate

AGE AGC cosy + Aes siny

AGC (A - 1) exH + BeyH + CxH + Dy u

Aes EexH + (F - 1) eyH + GxH + HyH

For rigid shaft A = 1, F = 1, B=C=D=E=G=H=0
B = a, T a3 cos¢y - bls siny, flap angle, positive up. rad
a = coning angle assumed constant, calculated in code (BETA),

rad



aygs b1s = multiblade flapping coordinates (state variables) ajg
longitudinal tilt, positive for flap back, rad
bls lateral tilt, positive for tilt down on right
side, rad

& = ¢ - Y, cosy - Yy siny, lag angle, positive for lag opposite

to rotation, rad
¢ = steady lag angle assumed constant, calculated in code

(RNOT), rad. This quantity does not appear elsewhere in

the code due to the use of multiblade coordinates

Yi:¥g = multiblade lag coordinates 18] corresponds to lateral
displacement of the rotor center of mass, positive to the
right, and Y2 correspond to longitudinal displacement,
positive forward, rad

Inflow

Vo= v, + v, X cosy + ve X siny, positive downard, fps

v, = average induced velocity, assumed constant, calculated in
code (VNNT), fps

Ver Vg T harmonic components, tip amplitude, calculated as

described in Appendix I

Fuselage

h = distance between fuselage CG and hub, ft

Hub Motion

Xg = longitudinal displacement of hub, positive aft, ft

Yy = lateral displacement of hub, positive to the right, ft

eyH = pitch angle, positive nose up, rad
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Ox.. = roll angle, positive left side down, rad

H

Generalized Coordinates

XH = Z txi q
Yg © X ty, 4
eyH = 2 tgy,
1
GxH = Z tex,
i
tx., tyl, tey
q; = GF ’
qz = d)F k]
q3 = yF 1]
Q4 = XF »
T = {txi
h
0
T = 0
Ll

fuselage

fuselage
fuselage
positive
fuselage

positive

elements of T matrix relating choice of

generalized coordinates (qi) to hub

motion. These are selected in the code as

pitch angle, positive nose up, rad

roll angle, positive right side down, rad
center of mass lateral displacement,

to the right, ft.

center of mass longitudinal displacement,

to the rear, ft

tyi, texi’ teyi}, transformation matrix
0 0 1
1 0
- 0 0
0 0 0

Note that the sign of the roll angle coordinate has been reversed

in the transformation matrix.



DISCUSSION

In order to investigate various coupled rotor-body problems
such as: 1) The dynamics of a helicopter disturbed from hovering
flight; 2) The dynamics of a helicopter resting on the ground
(ground resonance); 3) The dynamics of a rotor on a flexible
mount, the effect of hub motion is treated in the following way.
Hub motion is assumed to be horizontal displacement in two
directions (x,y), and rotation in pitch and roll (ey, Qx),

{xg) = {x, v, 8, 8,)

Generalized coordinates (qi) are used to describe the support

motion and are related to the hub motion by a transformation

matrix T:

{xg} = [T] {a;}

The matrix T can be selected to represent a variety of supports.
The equations of motion are of the general form:

Rotor Equations:

ARR{xR} + ARH{XH} = 0

Support Equations:

+

Asps {xy)

r} * 8sprixy)

Bgpp (%
The A’s are second order operators with the following

interpretation

ARR = rotor forces and moments due to rotor motion

fa)

RH rotor forces and moments due to hub motion

10
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ASRR = support forces and moments from rotor due to rotor
motion

ASHS = support forces and moments from support due to hub
motion

ASHR = support forces and moments from rotor due to hub
motion

Now to express'the equations of motion in terms of support motion

{qi} the transformation
{xg} = (1] {a)

is introduced and the equations of motion expressed as:

Ao (xp) + (BggM{a;} = 0

"
S

+ (A T +

SHS AsupT) {9;)

Asgr (*g!
This is the general form of the coupled rotor-support equations
of motion. Thus, the equations of motion of a rotor on a rigid
support with no hub motion (q.1 = 0) are:
Appixgt = 0
and the equations of motion of the support without the rotor are

BgpsT a3} = 0

It is assumed in the equations of motion given below that the
matrix of operators (ASHST) describing the support
system motion is diagonal and is of the form:

A...T = % (M. . s¢ +C.. 8 +K..]
11 11 11

Thus therqi’s are generalized coordinates describing the support
degrees of freedom. Care must be taken in the selection of the
support motion coordinates, such that the matrix (ASHST) is

11



diagonal. The factor 1/2 appears due to the normalization of

-

of support equations of motion.

DO bt

_
Mij © b1, (M)

The system matrices are of the general form,

Mer Mpu

M), =

SRR (Mgps * Mspr’

etc.

Potential Energy and Virtual Work Due to Thrust

The potential energy terms and the virtual work due to the
rotor thrust must be treated carefully since second order terms
are involved which are sensitive to the assumptions made
regarding support motion. The rotor terms are calculated based
on the assumption that the hub motion takes place in horizontal
plane. The linearized equations of motion assuming either
horizontal motion of the fuselage support or horizontal motion of
the hub, are the same as shown below. The potential energy and
virtual work due to thrust must be treated carefully. These
terms will be different in the two cases but their sum will be
the same. It is necessary to include in the evaluation of these
terms the effect of a vertical displacement (z). It is desirable
to consider the formulation with the fuselage or support center
of mass translational displacement in a horizontal plane. This
will also be a suitable approximation if the rotor is on a

flexible mount.

12



Rigid Fuselage/Shaft — Rotorcraft in Flight

First consider the case in which the equations of motion are
used to examine the dynamics of a helicopter in flight where the
shaft is assumed to be rigid. Both vertical motion of the hub
and fuselage are permitted at this point. The potential energy

of the system is (Fig. 1):

V = MFg Zp + bMBg Zy (1)
and the virtual work due to the thrust is:
6WT = T coseX siney 6xH - T sinexdyH
(2)
+ T cosB8_ cosB 6z
X y H

The thrust, T, is assumed constant since the trim condition is
hovering flight, however since it has a non-zero value in trim

the virtual work due to the second order displacement GzH must be

included since it will produce a first order term in the virtual
work.
The relationship between the fuselage displacements and the

hub displacements are:

- 3 3

Xy = Xg + h cosGX51n9y

Yy = Yp - h’ sinGx (3)
—_— 3

zg = zF + h coseX cos®

h’ is the height of the rotor center of mass above the fuselage

center of mass.

- _B
h’ = (h + MB Bo)

It can be shown that the linearized equations of motion that

13



result from assuming either hub motion constrained to a

horizontal plane (zH = 0) or fuselage motion constrained to a

horizontal plane (zF 0) will be the same if the potential

energy and virtual work terms are evaluated consistent with
either of these approximations. The vertical velocity of the hub
(éH) does not appear in the rotor kinetic energy terms due to the
hub motion assumption used in deriving the rotor terms in the
equations of motion. Using the alternate assumption that the
fuselage center of mass motion is constrained to the horizontal
plane (z_ = 0), there is no linearized contribution to the

F

kinetic energy from Z_ which arises only due to rotation of the

H
shaft. Therefore, it is only in the potential energy and virtual
work terms which arise due to the thrust vector that the effect
of this different assumption must be considered. The effect of
rotation on vertical displacement must be included in the
evaluation of these terms.

Horizontal Fuselage Motion

First consider the evaluation of the potential energy and
virtual work based on the assumption that the fuselage center of

mass remains in a horizontal plane (zF = 0). In this case,

potential energy terms will arise due to the vertical
displacement of the rotor mass.
Equation (1) becomes,

- - ’
\ bMBg zH bMB gh cosex cosey

14
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av aex o0
2 = - ’ ) X . Yy
aqi { bMth )(51n9xcosey aqi cosexs1n0y aqi)
a8 a8
= - b4 _X _X.
bMth (ex aqi + ey aqi)

These potential energy terms are considered apparent spring terms
in the computer code since they depend upon the support model
assumption. They are entered directly in the input file as Kii

terms. They take the following form,

%%; = 7 bMpght (T tg,595) tou; * (T tgy395) toyy)
For the coordinate selection given below,
%%I = %%; z - bMth’ GF (4)
%%; = %%; = - bMth’ ¢F

The virtual work terms due to rotor thrust simplify for this

assumption of (zF = 0) by noting that since the rotor thrust lies

along the shaft, angular motion of the shaft does not contribute

to the virtual work. Using Equations (3), with zp = 0, equation

(2) becomes,

W, = T cos@_ sin®_ é6x - T sin@_ 6y
X y X

T F F

= Sx.. + 8
Q . X QyF YF

Consequently the linearized terms are

15
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Xp equation
QXF =T ey =T Z teyi q

Y equation (5)
QyF = -T ex = - TZ texi q;

These terms are entered directly in the spring matrix [K]l for
for the specific form of the T matrix given below, i.e.,

teyl =1

t9x2 = -1

In the computer code these are terms RK1(8,5) and RK1(7,6).
The transformation matrix is selected in this case to

identify the q.1 as follows:

- T
q]. - {GF! ¢F, yF! XF}
where
OF fuselage pitch, positive nose up
¢F fuselage roll, positive right side down
Vg fuselage lateral translation, positive to the
right
Xp fuselage longitudinal translation, positive to the

rear

and the matrix T is

16



Tig = [ty toi toxi toyil
" h 0 0 1.0 |
T = 0 h “1.0 0
0 1.0 0 0
1.0 0 0 0o

Note that the sign convention for the roll angle has been

reversed (t2’3 = -1.0).

With this selection of coordinates the support terms are of

the form
My 9y + Kyyoay)
specifically
q; (8p)
(1, 6, - Ky 6)
q, (op)
(I, ;F - Kp 8p)
a5 (vp)
(Mg ¥p)
1, (xp)
(Mp xp)

where KB is obtained from the potential energy terms (equations

(4)) above.

KB = - bMB gh

17
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The spring constant K, is negative, representing the fact that

B

the rotor mass is above the fuselage mass.

Horizontal Hub Motion

It will now be shown that if the alternate assumption

(zH = 0) is employed the same terms will result. In this case

equations (1) and (2) become:

vV = MFg zF
GWT =T cosexsnley 6xH - T 51n9x GyH
and from Eq. (3)
6zF = + h’” sin® cosB_ 66 + h’ cosB8_sin8_ 68
X y X X Y Y
§x,., = 6x., — h’ sin6 sin8 668 + h’ cosB  cos®_ &0
H F X y X X y Yy
6yH = GyF - h cosex 69x
Assuming small angles and combining
6V -~ 6WT = (MFg - T) h GX 66x
+ (M - T) h* 8 686 6
(Mpg ) v %9y (6)
+ T ey 6xF - T GX 6yF
From vertical equilibrium
T = MFg + b MBg (7)

it can be seen that equations (6) and (7) give the same result

for the two terms given by equations (4) and (5). The terms are:
- - - ]
&V 6WT bMth Gx 69x
- bM h’ e_ 66 B
Bg v y (8)
+ T Gy éxF - T Qx 6yF
18
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Rotor Mounted on Support — Fixed Support Point

Now consider the case in which the rotor is mounted on a
flexible transmission/shaft system. There is assumed to be no
vertical motion of the support point (zF = 0). The potential

energy is due only to the blade mass,

vV = bMBg zZy

The virtual work due to the thrust is given by equation (2). 1If
we assume that the flexibility of the mounting is described by a
number of normal modes of amplitude a0 then the hub motion is
related to the q; by the transformation matrix T. The support

equation of motion would then be of the form,
M, {a.} + C..{a) + K. {a.} + {2 - a.) + agno(x.)
i1 1 i1t i i1t 1 aqi i SRR""R

+ ASHRT {qi} = 0
where the effect of hub vertical motion (zH) should be included

in the evaluation of the potential energy term due to the blade
mass and the virtual work term due to the thrust. In general as
noted above it is not necessary in the linearized formulation to

include the effect of éH in the remaining terms due to the rotor.

Mii’ Cii’ Kii are the generalized mass, damping and stiffness

associated with the ith mode. 1In general Zy will be a nonlinear

function of shaft deflection, i.e., a function of the lateral
deflection of the shaft squared. Physically this means that the

Zy deflection terms associated with thrust component and the

potential energy term will give rise to apparent spring terms.

19



Rigid Shaft

Consider first the rigid shaft case as discussed above. For

small deflections,

6WT =T Oy 6xH - T ey GyH + T 62H
(9)
6V = bMBh 6ZH
For rigid rotation of the shaft with no translation of the
support motion (GXF = 0, 6yF = 0)
6xH = h 69y
- _1?
6yH = -h 69X (10)
- _®? ~h?
GZH = —-h Gx GBX h By 69y

Substitution of equations (10) into (9) shows that the virtual
work 1is zero. An apparent spring is produced due to the
potential energy term associated with blade mass. That is,
physically, if the shaft is rigid the thrust does not produce a
moment about the support. Thus to examine this problem the terms
corresponding to the virtual work in the computer code should be
removed (RK1(8,5), RK1(7,6)).

Flexible Shaft

Consider now a simple case in which the shaft has one
deflection mode, in longitudinal plane only. The shaft
deflection is represented by a mode shape - The local

deflection of the shaft is (Figure 2):

Xy = Tll(Z) q

The local slope is

20
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dn
2] =

s dz (z) 4

At the hub location, the mode shapes are represented by the T

matrix coefficients.

ﬂl(h) - Txl
dnl
dz (h) = TGyl

The z deflection of the hub is

L
- _ 9 /1 dx,2
6ZH - aql(Z I (dz) dz)
o
where
ax . M
3z  dz 1
Thus
L dny 4
6z, = - (IO(E;—) dz) 9 6qi

This is an apparent spring terms or an effective change in

stiffness due to the potential energy and virtual work terms.
Note that the thrust is a "follower" force so that the

apparent change in stiffness depends upon the mode shape. The

virtual work due to the thrust is (6yH = 0)

6WT = 7T By GXH + T 62H
Therefore,
L dny o
6WT s T [Teyl TXl - IO (a;—) dz] q1 6q1
dn, Lodny o
=T [E;—(L) ﬂl(L) - Io (EE_ dz] 9, 6q,

21
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For a rigid shaft

_z
" 1

and

For a flexible shaft the sign of the apparent spring depends upon
the sign of the term in brackets above. This term can be also
expressed as,

L d LY

6W, = T ( J LB 5 dz] q, 69,
o dz

by integrating by parts in the case nl(O) = 0.

Thus the thrust will often tend to act as a negative spring
even though a tension is produced due to the fact that it is a
"follower" force (Figure 2).

These terms will be small, for a typical flexible shaft on
which a rotor is mounted. That is, the thrust and blade weight
will not have a strong effect on the shaft frequencies.

In the general case, with more complex shaft/transmission
modes, the T coefficients correspond to the deflection and slope
at the end of the shaft or support. If the mode characteristics
are only available numerically then an approximation must be made

to determine the zy dependence with deflection which should be of

the general form indicated above. Note also that if the shaft is
assumed rigid with a rotation about the base, the above equations

for ézH will recover the correct result for a rigid shaft.

22
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The generalized stiffness and mass

L 2

Kll = f EI(nl) dz
o
L 2

Myp = S om(my)" dz
o

23
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SUMMARY

A linearized set of equationé of motion for a coupled rotor-
body system for the trim condition of hovering flight have been
described. The rotor kinetic energy terms are derived based on
the assumption the hub motion takes placé in a horizontal plane.
The formulation permits the analysis of various coupled rotor-
body problems, including a rotor mounted on various supports and
free flight. Support motion can be assumed to lie in a
horizontal plane such that vertical displacement of the hub
arises only from rotation (rigid shaft) or support flexibility if
the potential energy and virtual work due to the thrust force
account for the vertical displacement of the shaft. For this
assumption, vertical displacement of the hub will be of second
order and will not contribute to the kinetic energy, but will
give rise to first order term in the potential energy and
virtual work due to thrust. Other virtual work terms due to
inplane forces and hub moments are not affected by this
assumption.

The terms to be evaluated for the specific support
assumption are:

vV = MFg zZp + bMBg Zy (1)

and

SW

T cos® sin@ 6x, — T sine_ &y
X y X

H H

(2)

+ T cos®_ cosB_ 6z
X y H

The equations of motion as described in detail below and

24
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currently in the computer program assume rigid shaft motion and

fuselage motion in a horizontal plane (zF = 0). This assumption

yields the relationships in equation (8)

s -
sV bMth ( GX 69X 2] 69y)

y
(8)
W

T T Gy GXF - TGX 6yF

The terms due to the virtual work of the thrust are entered
directly in the matrices (RK1(8,5), RK1(7,6)) and their placement

is reflected by selection of the qi’s as noted. The potential

energy terms give rise to apparent spring terms that are entered

in the input file (Kll,Kzz). Again their placement is reflected
by the selection of the qi’s.

Thus to study dynamic problems of a rotor on a support with
other selections of generalized coordinates, the potenfial energy
and virtual work due to the thrust must be calculated for the
specific problem and entered suitably in the computer progranm.
The virtual work terms are in a form corresponding to free flight
and are due to thrust. In general they should be removed from the

computer code (RK1(8,5), RK1(7,6)), for other problems.

25



PROGRAM INPUT FILE AND OPTIONS

The computer program is set up to provide the equations of

motion for a hovering helicopter in four cases:

1. Full system with dynamic inflow

2. Full system without dynamic inflow

3. Quasi-static system with dynamic inflow

4. Quasi-static system without dynamic inflow

The full system includes blade flap and lag degrees of freedom,
body degrees of freedom and dynamic inflow. The dynamic inflow
model is described in Appendix I of this report and the quasi-
static formulation is given in Appendix II. For the full system

with dynamic inflow, the state variables are,
T

{x} = {al, bl, Yis Yos 935 995 dgs 945 Vo vs}

The selection of the T matrix yields for the g’s,

4 = 9
ap = op
93 = ¥p
g = Xp

For the full system without dynamic inflow, v and v, are dropped

as state variables. For the quasi-static system,

_ T
{xqs} = {ql. 955 9g3s q4}

The rotor blade motion and the dynamic inflow are not state
variables and are eliminated as explained in Appendix II. Note
however that in the quasi-static case there is the option to

include quasi-static inflow terms which will of course influence
26



the results.

The data input file describes the physical characteristics
of the helicopter. The sample included is for the case of a
helicopter in flight with a rigid shaft.

The first three lines of the data file are the generalized

mass, spring and damping associated with the qidegrees of

freedom. These depend upon the choice of the T matrix (the next
two lines of the data file). For the selection of the T matrix

elements in the sample data file,

9p = 8 o My = Iy
ap T Op 5 Moy = Iy
Az = Yy o M3z = mg
A = Xp > Mgy = W

Note that these are inertial characteristics of the helicopter
without rotor blades. The generalized spring terms arise from
considerations discussed above and are equal to

S

_ _ _B
Kyy = Kgp = — bMgg (h + M, By)

The generalized damping terms are equal to zero in thié case.
The next two lines are the elements in the T matrix,

txi , tyi

texi s teyi

The selection in the example is explained in the introduction.

The sixth line in the data file contains

27



C = mechanical lag damping ft-1lb/rad/sec

4
KHL = equivalent lag spring ft-1b/rad
KHB = equivalent flap spring ft-1b/rad
1] = rotor rpm, rad/sec

The seventh line is,

<4
i

blade mass, slugs

B
Ms = blade first mass moment, slug-ft
IB = blade flapping moment of inertia, slug—ft2

(flap and lag moments of inertia assumed equal)

The eighth line is,

R = blade radius, ft

e = flap/lag hinge offset, ft

¢ = blade chord, ft

6 = blade solidity (number of blades appears through
solidity)

a = blade 1lift curve slope

The ninth line is,

ambient air density, slug/ft3

p

é blade average profile drag coefficient

The tenth line is,‘

d %

pitch change due to flap (63 hinge)

ex

1t

pitch change due to lag
The eleventh and twelfth lines permit introduction of swash plate

deflections with shaft bending. In the form given there is no
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swash plate deflection relative to the shaft with shaft motion.
The thirteenth line 1is:

T = trim thrust, lbs

h = dynamic inflow parameter

WRF = wake rigidity factor

h is the height of the equivalent cylinder of air to be
accelerated and WRF is the wake rigidity factor which should be

set equal to 2.0 as explained in Appendix I..
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APPENDIX I

DYNAMIC INFLOW

The equations of motion also permit addition of dynamic.
inflow components. Since the trim condition is hovering flight
only variable harmonic components are introduced. The harmonic
components are assumed to vary linearly with radius.

Av = vC X cosy + vs X siny

The equations describing the harmonic inflow component

amplitudes at the blade tip are:

4CM
TIvc + Vc = - kI [ac ]
4CR
TIvs M vs - T kI [ao ]

The harmonic components are positive for downward flow
through the rotor. 71 is the time constant associated with
response time of the inflow to changes in aerodynamic moments on
the rotor (CM, CR) and kI is the proportionality between the
aerodynamic moments and the inflow in the steady state. These

are expressed as

T, = h
I o235 arf
e} w
k. = aoRN
I o7 ¢
[o] w

There are two variable parameters in these expressions which

are input parameters to the computer program
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h = g where H is the height of an equivalent cylinder
of air which must be accelerated. The theoretical
value is H = .453R.

f . is the wake rigidity factor. The correct value of
this parameter is 2.0 (non-rigid wake) although in
some places in the literature it is taken as 1.0
(rigid-wake). This terminology is from Miller.
(fw = (WRF)).

In addition the harmonic induced velocity terms will change
the aerodynamic forces on the rotor blades. Denoting v = {v'

c
T
vs} .

The complete equations of motion with dynamic inflow are:

TR U B N I I
. “F‘\ fuy

Introducing the notation

C* - 4CMB
MB ao

where C;B the nondimensional blade flapping moment has two parts,

one due to the rotor and body motion, denoted C*

MBo ° and one due

to the harmonic inflow. Therefore,

b 4
ac
x % MB -
Cve = Cmpo t = Ve
avc

Note that in the equations above v is dimensional. In the

notation of the computer program.

2 aC
DYE v_ = - Kb
c 2
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b 1
: k aC
pYC(1,1) = - [+ 2 L M
I I av
c
pyc(1,1) = {ZVNNT)(WRF)Z2 . PP  pypyc + EB FNVC)
HH IR
DYB = - PP c;B - DYB2Z % + DYBI x
0
2 k
PP:.a_.o_Ij_(.}_:T—I
h I
where
WRF = f
w
VNNT = v, average induced velocity, dimensional
HH =h=n~"h R, dimensional

h and WRF are input constants in computer program

b 3
aC
_MB = - RMFVC
v
ac;H
— = — [RMFVC + (EB)(FNVC)]
avc

For the quasi-static inflow assumption,

DYCv = - DYB
and v can be eliminated from the force and moment equations. The
additional terms in the force and moment equations accounting for
inflow effects are,

- (DYE)(DYC)_I DYB

The term due to v equals,
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B

(

P 3
oC
1! MB
= (—)  (-PP)
avc
{ - }
T T B4
c
Substituting for PP
%
k1 Cup
MR -
2 v
1
g — }
2 1 kI aCMH
C
TI v
c
* b
ki ao Cymp _ up
1] T ’ - R
2vofw avc avC
{22 }
Yﬂz 8vo fw } C*
2 1 + {af } MBo
8v T
oW

This term can be combined with other aerodynamic terms in the

equations

_xf
2 MB
o)
to yield,
2
1 1] *
IR b ¢
8vofw
Thus

be viewed as a reduction in Lock number.
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of motion which are of the form

H

|

the effect of the inflow in the quasi-static case can

The effective Lock



number 1is,

Yg

Y

1+_ﬂ

8v T
o

W
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APPENDIX II

QUASI-STATIC FORMULATION

The quasi-static formulation is obtained by first separating

the rotor and body degrees of freedon.

- T o T
XI‘ - {al’ bl, er Yz} v = {VC, VS}
_ T
Xy = {ql, 495 dg5 q4}
The equations of motion are written as:
M11 M2 X C11 €12 X K17 Kyg X
.e + +
Ma1 Mg Xy Ca1 Cap Xy, Ko1 Koo X,
Fy
+ [DYE] {v} = {u}
Fa

The equations of motion for the inflow components are:

{v} = [DYC]{v} + [DYB1]{x} + {DYB2}{%} + [DF] {u}
The quasi-static assumption is obtained by setting:
Mip "My =€y 565 =0
v=20

solving the inflow equation,

{v} = - [DYC]-l [DYB1]{x} - [wc]‘1 [DYB2]{%x} - [DYC]‘1 [DF] {u}
This is substituted into the first set of equations:
[M] {x} + [C-DYE pyc! DYB2]{%} + [K-DYE pyc! DYBl] {x}

1

= [F + DYE DYC = DF] {u}
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Rewriting the equations:

[M] {x} + [T (%} + (K] {x} = [F] {u)

or
M1 Mg Xr €11 €12 *r Ky, K
My My b o1 Ca2 | % Ry K
F1
= {u}
Fa
The quasi-static assumption is:
Mg =fy =8y = &5 =0
Solving the first equation for the rotor motion,
_ _ g1 v _ g1 . _ g1
e, 3 = =Ky By ) - Kyp € {3} - Ryg

+ RI% Fo{u)

This is substituted into the second equation,

12

22

Rig {xy)

. -1 " -1 « .
(Mgy = Ryp Kyg Myol (xp)} + (85, - Ry Byy €ho) (%)

+ [K

_ _ -1
= [Fy - Kyy Kyy Bl {w}

-1
22 = Koy Ky Kol {xy)

These are the equations of motion for the quasi-static system

[QM] {x } + [QC] {%x } + [QK] {X } = [QF] {u)

These matrices are calculated in the subroutine QUASI.
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COMPUTER PROGRAM

Subroutine Matrix 2 calculates the following matrices

(Ax] [BX] [CX] [FX]

[DF] [DYB] [DYC] [DYE]

The complete system equations are:

[AX] {x} + [B] {%) + [CX] {x} + [DYE] {v} = {FX} u

{v} = [pYC] {v} + + [DYB1] {x} + [DYB2] {%x} + [DF] {u}

THE VARIABLES ARE

_ T
{X} - {al’ bl’ Yl) Y29 qll q21 q3i Q4)
{v} = {v_, v}
NOTE:
AX, BX, CX, FX are renamed M, C, K, F
when Matrix 2 is called.
Complete system equations of motiocn
X 0 1 0 INES [ o
X = vk -ml¢  -mlpye X ? + M 1F
v DYB1 DYB2 DYC ) l DF
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SAMPLE DATA FILE
(BHEFA.DAT)

UH~-60A BLACKHAWK PARAMETERS

IB8512. 0, 4659.0, 46Q.9, 460.9
-7959. @, -7959.@, @.@, @.0

@.Q, @.0, v.@, 0.

€.87, .2, 2.0, 1.0, @.», €.687, 1.0, 0.0
.0, -1.0, 0.2, 2.9, i.@, ? 0O, 0.0, 2.0
4EQQ, D, B, 0.0, ET. @

7.928, 86.7@, 1S1&.6

o6.83, 1.25, 1.73, @.0821, 5.73
1.95E-23, @.015

2.2, 0.@

l.@, @.2, 2.2, @.@

.2, 1.2, .2 ,2.@

1587@. @, 0. 46, Z. Q0

parameters

ELACHKHAWK data for flight test. Includes two additiconal
following the thrust: HH, the height of the egquivalent cylinder of
airi; and WRF, the wake rigidity factor, eqgqual to

ard &.@ for non—rigid wake.
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w==[ OPEN-LOOF EIGENVALUES 1===

EIGENVALUE REAL IMAG

. Q2RE A+ . DR +2@
. ARRE+21 . ARQE+Q@
DESE+2R 5. ZR3E+@1
QISE+p2 ~5. ZQ3IE+O1

DG T o
ot
[GRT)

5 ~1.983E+02 3.911E+@1
& ~1.983E+2@ -3.911E+@1
7 ~2.57CE+@1 . 464E+202
8 —2. S7EE+Q1 —&. 4E4E+0QQ
) —-1.353E+22 1. 8z8E+Q]
1@ -1. 353E+22 -1, 8z8E+01
11 ~Z.997E+Q2 4. D4RE+QQ
= ~&. 937E+QQD ~4, F4DE+QA
13 —4. Z63E+Q2Q . PARE+Q2
14 -1.9511E+2@ . ADBE+QR
15 5, 173E-@2 3.875E-01
16 5, 173E-22 ~3.275E~-01
17 £.S05E-03 3.538PE-01
18 €.SRSE-BZ ~3.539E-01

SAMPLE PROGRAM OUTPUT
FULL SYSTEM WITH DYNAMIC INFLOW

INPUT DATA FILE (BHEFA.DAT)

Eigenvalue Identification

(1,2) Associated with lack of dependence on Xpo Vg
(3,4) Advancing flap mode

(56,6) Advancing lag mode

(7,8) Inflow mode

(9,10) Regressing lag mode

(11,12) Coupled roll/body flap mode
(13,14) Coupled pitch/body flap modes

(15,16,17,18) Coupled roll, pitch, body translation modes
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Notes on the usage and compilation of HSNEW:

H5NEW is an updated version of a program for calculation of helicopter rotor/body linearized dynamic
equations of motion. The helicopter is assumed to be in hover; formulation is sufficiently general to
accommodate a wide variety of helicopter and rotortypes, as explained in the detailed documentation.
These paragraphs are meant to aid installation of the program on a machine other than that on which it
was developed, namely, an IBM-PC with an 8087 numeric coprocessor.

Files on this distribution diskette include source code for the generation of matrices in the equations of
motion, as well as executable code that should run, unmodified, on an IBM-PC class machine with an
8087 math chip installed. Scenarios are presented below if this is not your current installation.

If you will be running the program on another machine, the source must be recompiled and relinked into
an executable module. One of the notable problems that will be immediately encountered is that the
source for the eigenvalue/eigenvector routines is NOT on this diskette, due to space constraints. These
routines, called from the subroutine "EIGSYS", are part of the standard EISPACK matrix subroutine
package for real general matrices, and should (hopefully) be available at your installation. Note that the
eigenanalysis portion of the main program HSNEW is really a post-processing function, and not intrinsic
to the generation of the system matrices in the first place. Thus, one could just comment out the lines in
the main program to eliminate the eigenanalysis, and then recompile and relink the code.

The file "LNK" contains a "batch™like file for the linking process, following the successful recompilation
of the program and subroutines on the disk. Linking of the object code (*.OBJ) can be done via:

link @LNK

provided that the EISPACK routines have been compiled and grouped into their own library.
Compilation of the programs on another computer (under a UNIX or VMS environment) will of course
depend upon the appropriate incantations necessary for the resident FORTRAN compiler, and are best
formulated by a quick study of the contents of the listings.

The main routine is called "HSNEW", which reads in both controlling information and names of input
data files. This main executive then passes control to "MATRIX2", which is given the task of computing
all of the system matrices for the problem. Then, according to the wishes of the user, one or more support
routines are used to combine the matrices produced from "MATRIX2". These include: FRST, a
subroutine that reduces the mass-spring-damping formulation into 2-N sets of first-order ordinary
differential equations; MINV, a matrix inversion routine, required in several matrix combination
operations; QUASI, a subroutine that generates a "quasi-static” model based upon the full rotor+body
dynamics equations; and EIGSYS, a subroutine that in turn calls EISPACK routines to compute system
eigenvalues and eigenvectors for either the full or quasi-static systems.

Also on the disk is a file called OPTSYS.EXE, which is an executable program (again, requiring an 8087
chip) for computing system poles for matrix-vector representations of linear systems. This routine allows
one to investigate effects of certain feedback on the pole locations of the closed-loop system.

BHEFA.DAT is an example data file for input to the program, with some additional commenting after the
last line of numeric input.

Should installation questions arise, you may contact me for further help:

Bob McKillip

Mechanical and Aerospace Engineering Dept.
Princeton University

P.O. Box CN5263

Princeton, NJ 08544-5263

(609) 258-5147



