3,053 research outputs found

    Partial radiogenic heat model for Earth revealed by geoneutrino measurements

    Get PDF
    The Earth has cooled since its formation, yet the decay of radiogenic isotopes, and in particular uranium, thorium and potassium, in the planet’s interior provides a continuing heat source. The current total heat flux from the Earth to space is 44:2±1.0 TW, but the relative contributions from residual primordial heat and radiogenic decay remain uncertain. However, radiogenic decay can be estimated from the flux of geoneutrinos, electrically neutral particles that are emitted during radioactive decay and can pass through the Earth virtually unaffected. Here we combine precise measurements of the geoneutrino flux from the Kamioka Liquid-Scintillator Antineutrino Detector, Japan, with existing measurements from the Borexino detector, Italy.We find that decay of uranium-238 and thorium-232 together contribute 20.0^(+8.8)_(-8.6)TW to Earth’s heat flux. The neutrinos emitted from the decay of potassium-40 are below the limits of detection in our experiments, but are known to contribute 4TW. Taken together, our observations indicate that heat from radioactive decay contributes about half of Earth’s total heat flux. We therefore conclude that Earth’s primordial heat supply has not yet been exhausted

    Constraints on θ_(13) from a three-flavor oscillation analysis of reactor antineutrinos at KamLAND

    Get PDF
    We present new constraints on the neutrino oscillation parameters Δm^2_(21), θ_(12), and θ_(13) from a three flavor analysis of solar and KamLAND data. The KamLAND data set includes data acquired following a radiopurity upgrade and amounts to a total exposure of 3.49 x 10^(32) target-proton-year. Under the assumption of CPT invariance, a two-flavor analysis (θ_(13) = 0) of the KamLAND and solar data yields the best-fit values tan^2θ_(12) = 0.444^(+0.036)_(-0.030) and Δm^2_(21) = 7.50^(+0.19)_(-0.20) x 10^(-5) eV^2; a three-flavor analysis with θ13 as a free parameter yields the best-fit values tan^2θ_(12) = 0.452^(+0.035)_(-0.033), Δm^2_(21) = 7.50^(+0.19)_(-0.20) x 10^(-5) eV^2, and sin^2θ_(13) = 0.020^(+0.016)_(-0.016). This θ_(13) interval is consistent with other recent work combining the CHOOZ, atmospheric and long-baseline accelerator experiments. We also present a new global θ_(13) analysis, incorporating the CHOOZ, atmospheric, and accelerator data, which indicates sin^2θ_(13) = 0.009^(+0.013)-_(0.007). A nonzero value is suggested, but only at the 79% C.L

    Measurement of the ^8B solar neutrino flux with the KamLAND liquid scintillator detector

    Get PDF
    We report a measurement of the neutrino-electron elastic scattering rate from ^8B solar neutrinos based on a 123 kton-day exposure of KamLAND. The background-subtracted electron recoil rate, above a 5.5-MeV analysis threshold is 1.49 ± 0.14(stat) ± 0.17(syst) events per kton-day. Interpreted as due to a pure electron flavor flux with a ^8B neutrino spectrum, this corresponds to a spectrum integrated flux of 2.77 ± 0.26(stat) ± 0.32(syst) ×10^6 cm^(−2_s^(−1). The analysis threshold is driven by ^(208)Tl present in the liquid scintillator, and the main source of systematic uncertainty is due to background from cosmogenic ^(11)Be. The measured rate is consistent with existing measurements and with standard solar model predictions which include matter-enhanced neutrino oscillation

    Mass Hierarchy Resolution in Reactor Anti-neutrino Experiments: Parameter Degeneracies and Detector Energy Response

    Get PDF
    Determination of the neutrino mass hierarchy using a reactor neutrino experiment at ∼\sim60 km is analyzed. Such a measurement is challenging due to the finite detector resolution, the absolute energy scale calibration, as well as the degeneracies caused by current experimental uncertainty of ∣Δm322∣|\Delta m^2_{32}|. The standard χ2\chi^2 method is compared with a proposed Fourier transformation method. In addition, we show that for such a measurement to succeed, one must understand the non-linearity of the detector energy scale at the level of a few tenths of percent.Comment: 7 pages, 6 figures, accepted by PR

    Production of radioactive isotopes through cosmic muon spallation in KamLAND

    Get PDF
    Radioactive isotopes produced through cosmic muon spallation are a background for rare-event detection in ν detectors, double-β-decay experiments, and dark-matter searches. Understanding the nature of cosmogenic backgrounds is particularly important for future experiments aiming to determine the pep and CNO solar neutrino fluxes, for which the background is dominated by the spallation production of ^(11)C. Data from the Kamioka liquid-scintillator antineutrino detector (KamLAND) provides valuable information for better understanding these backgrounds, especially in liquid scintillators, and for checking estimates from current simulations based upon MUSIC, FLUKA, and GEANT4. Using the time correlation between detected muons and neutron captures, the neutron production yield in the KamLAND liquid scintillator is measured to be Y_n=(2.8±0.3)×10^(-4) μ^(-1) g^(-1) cm^2. For other isotopes, the production yield is determined from the observed time correlation related to known isotope lifetimes. We find some yields are inconsistent with extrapolations based on an accelerator muon beam experiment

    Measurement of neutrino oscillation with KamLAND: Evidence of spectral distortion

    Get PDF
    We present results of a study of neutrino oscillation based on a 766 ton/year exposure of KamLAND to reactor antineutrinos. We observe 258 v_e candidate events with energies above 3.4 MeV compared to 365.2±23.7 events expected in the absence of neutrino oscillation. Accounting for 17.8±7.3 expected background events, the statistical significance for reactor v_e over bar (e) disappearance is 99.998%. The observed energy spectrum disagrees with the expected spectral shape in the absence of neutrino oscillation at 99.6% significance and prefers the distortion expected from v_e oscillation effects. A two-neutrino oscillation analysis of the KamLAND data gives Δm^2=7.9_(-0.5)^(+0.6)x10^(-5) eV^2. A global analysis of data from KamLAND and solar-neutrino experiments yields Δm^2=7.9_(-0.5)^(+0.6)x10^(-5) eV^2 and tan^2θ=0.40_(-0.07)^(+0.10), the most precise determination to date

    High Sensitivity Search for v_e’s from the Sun and Other Sources at KamLAND

    Get PDF
    Data corresponding to a KamLAND detector exposure of 0.28 kton yr has been used to search for ν̅ _e’s in the energy range 8.3 < E_(ν̅e) < 14.8  MeV. No candidates were found for an expected background of 1.1±0.4 events. This result can be used to obtain a limit on ν̅_e fluxes of any origin. Assuming that all ν̅_e flux has its origin in the Sun and has the characteristic ^8B solar ν_e energy spectrum, we obtain an upper limit of 3.7×10^2  cm^(-2) ^(s-1) (90% C.L.) on the ν̅_e flux. We interpret this limit, corresponding to 2.8×10^(-4) of the standard solar model ^8B ν_e flux, in the framework of spin-flavor precession and neutrino decay models

    Evidence for a Single-Spin Azimuthal Asymmetry in Semi-inclusive Pion Electroproduction

    Get PDF
    Single-spin asymmetries for semi-inclusive pion production in deep-inelastic scattering have been measured for the first time. A significant target-spin asymmetry of the distribution in the azimuthal angle φ of the pion relative to the lepton scattering plane was formed for π^+ electroproduction on a longitudinally polarized hydrogen target. The corresponding analyzing power in the sinφ moment of the cross section is 0.022±0.005±0.003. This result can be interpreted as the effect of terms in the cross section involving chiral-odd spin distribution functions in combination with a chiral-odd fragmentation function that is sensitive to the transverse polarization of the fragmenting quark

    Neutron calibration sources in the Daya Bay experiment

    Get PDF
    We describe the design and construction of the low rate neutron calibration sources used in the Daya Bay Reactor Anti-neutrino Experiment. Such sources are free of correlated gamma-neutron emission, which is essential in minimizing induced background in the anti-neutrino detector. The design characteristics have been validated in the Daya Bay anti-neutrino detector. (C) 2015 Elsevier B.V. All rights reserved

    A compact ultra-clean system for deploying radioactive sources inside the KamLAND detector

    Get PDF
    We describe a compact, ultra-clean device used to deploy radioactive sources along the vertical axis of the KamLAND liquid-scintillator neutrino detector for purposes of calibration. The device worked by paying out and reeling in precise lengths of a hanging, small-gauge wire rope (cable); an assortment of interchangeable radioactive sources could be attached to a weight at the end of the cable. All components exposed to the radiopure liquid scintillator were made of chemically compatible UHV-cleaned materials, primarily stainless steel, in order to avoid contaminating or degrading the scintillator. To prevent radon intrusion, the apparatus was enclosed in a hermetically sealed housing inside a glove box, and both volumes were regularly flushed with purified nitrogen gas. An infrared camera attached to the side of the housing permitted real-time visual monitoring of the cable׳s motion, and the system was controlled via a graphical user interface
    • …
    corecore