8,402 research outputs found
Validation of the communications link analysis and simulation system (CLASS)
CLASS (Communication Link Analysis and Simulation System) is a software package developed for NASA to predict the communication and tracking performance of the Tracking and Data Relay Satellite System (TDRSS) services. The methods used to verify CLASS are described. The usefulness of a software tool such as CLASS depends strongly on the reliability and accuracy of the results it produces. For this reason, considerable attention was paid to validation throughout the CLASS development
Shuttle Ku-band signal design study
Carrier synchronization and data demodulation of Unbalanced Quadriphase Shift Keyed (UQPSK) Shuttle communications' signals by optimum and suboptimum methods are discussed. The problem of analyzing carrier reconstruction techniques for unbalanced QPSK signal formats is addressed. An evaluation of the demodulation approach of the Ku-Band Shuttle return link for UQPSK when the I-Q channel power ratio is large is carried out. The effects that Shuttle rocket motor plumes have on the RF communications are determined also. The effect of data asymmetry on bit error probability is discussed
Antiferromagnetic Spin Fluctuations in the Metallic Phase of Quasi-Two-Dimensional Organic Superconductors
We give a quantitative analysis of the previously published nuclear magnetic
resonance (NMR) experiments in the k-(ET)2X family of organic charge transfer
salts by using the phenomenological spin fluctuation model of Moriya, and
Millis, Monien and Pines (M-MMP). For temperatures above T_nmr ~ 50 K, the
model gives a good quantitative description of the data in the metallic phases
of several k-(ET)2X materials. These materials display antiferromagnetic
correlation lengths which increase with decreasing temperature and grow to
several lattice constants by T_nmr. It is shown that the fact that the
dimensionless Korringa ratio is much larger than unity is inconsistent with a
broad class of theoretical models (such as dynamical mean-field theory) which
neglects spatial correlations and/or vertex corrections. For materials close to
the Mott insulating phase the nuclear spin relaxation rate, the Knight shift
and the Korringa ratio all decrease significantly with decreasing temperature
below T_nmr. This cannot be described by the M-MMP model and the most natural
explanation is that a pseudogap, similar to that observed in the underdoped
cuprate superconductors, opens up in the density of states below T_nmr. Such a
pseudogap has recently been predicted to occur in the dimerised organic charge
transfer salts materials by the resonating valence bond (RVB) theory. We
propose specific new experiments on organic superconductors to elucidate these
issues. For example, measurements to see if high magnetic fields or high
pressures can be used to close the pseudogap would be extremely valuable.Comment: 11 pages, 2 figures. Accepted for publication in Phys. Rev.
First-principle density-functional calculation of the Raman spectra of BEDT-TTF
We present a first-principles density-functional calculation for the Raman
spectra of a neutral BEDT-TTF molecule. Our results are in excellent agreement
with experimental results. We show that a planar structure is not a stable
state of a neutral BEDT-TTF molecule. We consider three possible conformations
and discuss their relation to disorder in these systems.Comment: 3 pages, 2 figures, submitted to the proceedings of ISCOM 200
Shuttle/TDRSS modelling and link simulation study
A Shuttle/TDRSS S-band and Ku-band link simulation package called LinCsim was developed for the evaluation of link performance for specific Shuttle signal designs. The link models were described in detail and the transmitter distortion parameters or user constraints were carefully defined. The overall link degradation (excluding hardware degradations) relative to an ideal BPSK channel were given for various sets of user constraint values. The performance sensitivity to each individual user constraint was then illustrated. The effect of excessive Spacelab clock jitter on the return link BER performance was also investigated as was the problem of subcarrier recovery for the K-band Shuttle return link signal
Electronic and magnetic properties of the ionic Hubbard model on the striped triangular lattice at 3/4 filling
We report a detailed study of a model Hamiltonian which exhibits a rich
interplay of geometrical spin frustration, strong electronic correlations, and
charge ordering. The character of the insulating phase depends on the magnitude
of Delta/|t| and on the sign of t. We find a Mott insulator for Delta >> U >>
|t|; a charge transfer insulator for U >> \Delta >> |t|; and a correlated
covalent insulator for U >> \Delta ~ |t|. The charge transfer insulating state
is investigated using a strong coupling expansion. The frustration of the
triangular lattice can lead to antiferromagnetism or ferromagnetism depending
on the sign of the hopping matrix element, t. We identify the "ring" exchange
process around a triangular plaquette which determines the sign of the magnetic
interactions. Exact diagonalization calculations are performed on the model for
a wide range of parameters and compared to the strong coupling expansion. The
regime U >> \Delta ~ |t| and t<0 is relevant to Na05CoO2. The calculated
optical conductivity and the spectral density are discussed in the light of
recent experiments on Na05CoO2.Comment: 15 pages, 15 figure
Evidence for nonlinear diffusive shock acceleration of cosmic-rays in the 2006 outburst of the recurrent nova RS Ophiuchi
Spectroscopic observations of the 2006 outburst of the recurrent nova RS
Ophiuchi at both infrared (IR) and X-ray wavelengths have shown that the blast
wave has decelerated at a higher rate than predicted by the standard
test-particle adiabatic shock-wave model. Here we show that the observed
evolution of the nova remnant can be explained by the diffusive shock
acceleration of particles at the blast wave and the subsequent escape of the
highest energy ions from the shock region. Nonlinear particle acceleration can
also account for the difference of shock velocities deduced from the IR and
X-ray data. The maximum energy that accelerated electrons and protons can have
achieved in few days after outburst is found to be as high as a few TeV. Using
the semi-analytic model of nonlinear diffusive shock acceleration developed by
Berezhko & Ellison, we show that the postshock temperature of the shocked gas
measured with RXTE/PCA and Swift/XRT imply a relatively moderate acceleration
efficiency.Comment: Accepted for publication in ApJ
Ku-band system design study and TDRSS interface analysis
The capabilities of the Shuttle/TDRSS link simulation program (LinCsim) were expanded to account for radio frequency interference (RFI) effects on the Shuttle S-band links, the channel models were updated to reflect the RFI related hardware changes, the ESTL hardware modeling of the TDRS communication payload was reviewed and evaluated, in LinCsim the Shuttle/TDRSS signal acquisition was modeled, LinCsim was upgraded, and possible Shuttle on-orbit navigation techniques was evaluated
Ferromagnetism, paramagnetism and a Curie-Weiss metal in an electron doped Hubbard model on a triangular lattice
Motivated by the unconventional properties and rich phase diagram of NaxCoO2
we consider the electronic and magnetic properties of a two-dimensional Hubbard
model on an isotropic triangular lattice doped with electrons away from
half-filling. Dynamical mean-field theory (DMFT) calculations predict that for
negative inter-site hopping amplitudes (t<0) and an on-site Coulomb repulsion,
U, comparable to the bandwidth, the system displays properties typical of a
weakly correlated metal. In contrast, for t>0 a large enhancement of the
effective mass, ferromagnetism and a Curie-Weiss magnetic susceptibility are
found in a broad electron doping range. Our observation of Nagaoka
ferromagnetism is consistent with the A-type antiferromagnetism (i.e.
ferromagnetic layers stacked antiferromagnetically) observed in neutron
scattering experiments on NaxCoO2. We propose that `Curie-Weiss metal' phase
observed in NaxCoO2 is a consequence of the crossover from ``bad metal'' with
incoherent quasiparticles at temperatures T>T* and Fermi liquid behavior with
enhanced parameters below T*, where T* is a low energy coherence scale induced
by strong local Coulomb electron correlations. We propose a model which
contains the charge ordering phenomena observed in the system which, we
propose, drives the system close to the Mott insulating phase even at large
dopings.Comment: 24 pages, 15 figures; accepted for publication in Phys. Rev.
Competition between Charge Ordering and Superconductivity in Layered Organic Conductors -(BEDT-TTF)Hg(SCN) (M = K, NH)
While the optical properties of the superconducting salt
-(BEDT-TTF)NHHg(SCN) remain metallic down to 2 K, in the
non-superconducting K-analog a pseudogap develops at frequencies of about 200
cm for temperatures T < 200 K. Based on exact diagonalisation
calculations on an extended Hubbard model at quarter-filling we argue that
fluctuations associated with short range charge ordering are responsible for
the observed low-frequency feature. The different ground states, including
superconductivity, are a consequence of the proximity of these compounds to a
quantum phase charge-ordering transition driven by the intermolecular Coulomb
repulsion.Comment: 4 pages, 3 figure
- …