14 research outputs found

    Effector function does not contribute to protection from virus challenge by a highly potent HIV broadly neutralizing antibody in nonhuman primates

    No full text
    Protection from immunodeficiency virus challenge in nonhuman primates (NHPs) by a first-generation HIV broadly neutralizing antibody (bnAb) b12 has previously been shown to benefit from interaction between the bnAb and FcÎł receptors (FcÎłRs) on immune cells. To investigate the mechanism of protection for a more potent second-generation bnAb currently in clinical trials, PGT121, we carried out a series of NHP studies. These studies included treating with PGT121 at a concentration at which only half of the animals were protected to avoid potential masking of FcÎłR effector function benefits by dominant neutralization and using a new variant that more completely eliminated all rhesus FcÎłR binding than earlier variants. In contrast to b12, which required FcÎłR binding for optimal protection, we concluded that PGT121-mediated protection is not augmented by FcÎłR interaction. Thus, for HIV-passive antibody prophylaxis, these results, together with existing literature, emphasize the importance of neutralization potency for clinical antibodies, with effector function requiring evaluation for individual antibodies. </p

    Passive Transfer of Vaccine-Elicited Antibodies Protects against SIV in Rhesus Macaques

    No full text
    Several HIV-1 and SIV vaccine candidates have shown partial protection against viral challenges in rhesus macaques. However, the protective efficacy of vaccine-elicited polyclonal antibodies has not previously been demonstrated in adoptive transfer studies in nonhuman primates. In this study, we show that passive transfer of purified antibodies from vaccinated macaques can protect naive animals against SIVmac251 challenges. We vaccinated 30 rhesus macaques with Ad26-SIV Env/Gag/Pol and SIV Env gp140 protein vaccines and assessed the induction of antibody responses and a putative protective signature. This signature included multiple antibody functions and correlated with upregulation of interferon pathways in vaccinated animals. Adoptive transfer of purified immunoglobulin G (IgG) from the vaccinated animals with the most robust protective signatures provided partial protection against SIVmac251 challenges in naive recipient rhesus macaques. These data demonstrate the protective efficacy of purified vaccine-elicited antiviral antibodies in this model, even in the absence of virus neutralization.National Institutes of Health (Grants AI060354, AI080289, AI102660, AI124377, AI126603, AI128751, AI129797, OD024917

    National Lipid Association Recommendations for Patient-Centered Management of Dyslipidemia: Part 2

    Get PDF
    An Expert Panel convened by the National Lipid Association previously developed a consensus set of recommendations for the patient-centered management of dyslipidemia in clinical medicine (part 1). These were guided by the principle that reducing elevated levels of atherogenic cholesterol (non–high-density lipoprotein cholesterol and low-density lipoprotein cholesterol) reduces the risk for atherosclerotic cardiovascular disease. This document represents a continuation of the National Lipid Association recommendations developed by a diverse panel of experts who examined the evidence base and provided recommendations regarding the following topics: (1) lifestyle therapies; (2) groups with special considerations, including children and adolescents, women, older patients, certain ethnic and racial groups, patients infected with human immunodeficiency virus, patients with rheumatoid arthritis, and patients with residual risk despite statin and lifestyle therapies; and (3) strategies to improve patient outcomes by increasing adherence and using team-based collaborative care

    Application of Virtual Screening to the Identification of New LpxC Inhibitor Chemotypes, Oxazolidinone and Isoxazoline

    No full text
    This report summarizes the identification and synthesis of novel LpxC inhibitors aided by computational methods that leveraged numerous crystal structures. This effort led to the identification of oxazolidinone and isoxazoline inhibitors with potent in vitro activity against P. aeruginosa and other Gram-negative bacteria. Representative compound 13f demonstrated efficacy against P. aeruginosa in a mouse neutropenic thigh infection model. The antibacterial activity against K. pneumoniae could be potentiated by Gram-positive antibiotics rifampicin (RIF) and vancomycin (VAN) in both in vitro and in vivo models

    Vaccination induces broadly neutralizing antibody precursors to HIV gp41

    No full text
    A key barrier to the development of vaccines that induce broadly neutralizing antibodies (bnAbs) against human immunodeficiency virus (HIV) and other viruses of high antigenic diversity is the design of priming immunogens that induce rare bnAb-precursor B cells. The high neutralization breadth of the HIV bnAb 10E8 makes elicitation of 10E8-class bnAbs desirable; however, the recessed epitope within gp41 makes envelope trimers poor priming immunogens and requires that 10E8-class bnAbs possess a long heavy chain complementarity determining region 3 (HCDR3) with a specific binding motif. We developed germline-targeting epitope scaffolds with affinity for 10E8-class precursors and engineered nanoparticles for multivalent display. Scaffolds exhibited epitope structural mimicry and bound bnAb-precursor human naive B cells in ex vivo screens, protein nanoparticles induced bnAb-precursor responses in stringent mouse models and rhesus macaques, and mRNA-encoded nanoparticles triggered similar responses in mice. Thus, germline-targeting epitope scaffold nanoparticles can elicit rare bnAb-precursor B cells with predefined binding specificities and HCDR3 features.</p
    corecore