48 research outputs found

    Fate of ZnO nanoparticles in soils and cowpea (Vigna unguiculata)

    Get PDF
    The increasing use of zinc oxide nanoparticles (ZnO-NPs) in various commercial products is prompting detailed investigation regarding the fate of these materials in the environment. There is, however, a lack of information comparing the transformation of ZnO-NPs with soluble Zn2+ in both soils and plants. Synchrotron-based techniques were used to examine the uptake and transformation of Zn in various tissues of cowpea (Vigna unguiculata (L.) Walp.) exposed to ZnO-NPs or ZnCI2 following growth in either solution or soil culture. In solution culture, soluble Zn (ZnCI2) was more toxic than the ZnO-NPs, although there was substantial accumulation of ZnO-NPs on the root surface. When grown in soil, however, there was no significant difference in plant growth and accumulation or speciation of Zn between soluble Zn and ZnO-NP treatments, indicating that the added ZnO-NPs underwent rapid dissolution following their entry into the soil. This was confirmed by an incubation experiment with two soils, in which ZnO-NPs could not be detected after incubation for 1 h. The speciation of Zn was similar in shoot tissues for both soluble Zn and ZnO-NPs treatments and no upward translocation of ZnO-NPs from roots to shoots was observed in either solution or soil culture. Under the current experimental conditions, the similarity in uptake and toxicity of Zn from ZnO-NPs and soluble Zn in soils indicates that the ZnO-NPs used in this study did not constitute nanospecific risks

    Aluminium effects on mechanical properties of cell wall analogues

    Get PDF
    Aluminium (Al) toxicity adversely impacts plant productivity in acid soils by restricting root growth and although several mechanisms are involved the physiological basis of decreased root elongation remains unclear. Understanding the primary mechanisms of Al rhizotoxicity is hindered due to the rapid effects of soluble Al on root growth and the close proximity of many cellular components within the cell wall, plasma membrane, cytosol and nucleus with which Al may react. To overcome some of these difficulties, we report on a novel method for investigating Al interactions with Komagataeibacter xylinus bacterial cellulose (BC)-pectin composites as cell wall analogues. The growth of K. xylinus in the presence of various plant cell wall polysaccharides, such as pectin, has provided a unique in vitro model system with which to investigate the interactions of Al with plant cell wall polysaccharides. The BC-pectin composites reacted in a similar way with Al as do plant cell walls, providing insights into the effects of Al on the mechanical properties of the BC-pectin composites as cell wall analogues. Our findings indicated that there were no significant effects of Al (4-160 μM) on the tensile stress, tensile strain or Young's modulus of the composites. This finding was consistent with cellulose, not pectin, being the major load bearing component in BC-pectin composites, as is also the case in plant cell walls

    Minimizing experimental artefacts in synchrotron-based X-ray analyses of Fe speciation in tissues of rice plants

    Get PDF
    Iron (Fe) plays an important role within environmental systems. Synchrotron-based X-ray approaches, including X-ray absorption spectroscopy (XAS), provide powerful tools for in situ analyses of Fe speciation, but beam damage during analysis may alter Fe speciation during its measurement. XAS was used to examine whether experimental conditions affect the analysis of Fe speciation in plant tissues. Even when analyzed in a cryostat at 12 K, it was found that Fe can rapidly (within 0.5–1 min) photoreduce to Fe, although the magnitude of photoreduction varied depending upon the hydration of the sample, the coordination chemistry of the Fe, as well as other properties. For example, photoreduction of Fe was considerably higher for aqueous standard compounds than for hydrated plant-root tissues. The use of freeze-dried samples in the cryostat (12 K) markedly reduced the magnitude of this Fe photoreduction, and there was no evidence that the freeze-drying process itself resulted in experimental artefacts under the current experimental conditions, such as through the oxidation of Fe, although some comparatively small differences were observed when comparing spectra of hydrated and freeze-dried Fe compounds. The results of this study have demonstrated that Fe photoreduction can occur during X-ray analysis, and provides suitable conditions to preserve Fe speciation to minimize the extent of beam damage when analyzing environmental samples. All studies utilizing XAS are encouraged to include a preliminary experiment to determine if beam damage is occurring, and, where appropriate, to take the necessary steps (such as freeze drying) to overcome these issues

    Time-resolved x-Ray fluorescence analysis of element distribution and concentration in living plants: an example using manganese toxicity in cowpea leaves

    Get PDF
    The distribution and concentration of nutrients and contaminants affect almost every metabolic process in plants but analytical limitations have hindered the determination of microscopic changes over time within living plant tissues. We developed a novel method using synchrotron-based micro X-ray fluorescence (μ-XRF) that, for the first time, allows quantification of the spatial and temporal changes of multiple elements in the same area of living leaves. The utility of this approach was tested by examining changes over 48 h in unifoliate leaves of 7-d-old cowpea (Vigna unguiculata) plants simultaneously at 0.2 and 30 μM Mn in nutrient solution, with 30 μM Mn known to be toxic to cowpea and cause the formation of Mn-dense lesions. The fast X-ray fluorescence detector system reduced dwell on living leaf samples. This produced no evidence of tissue damage through repeated μ-XRF scanning, thereby overcoming previously noted experimental artifacts. This permitted, for the first time, visual and quantitative assessments of spatial and temporal changes in nutrient concentrations. By focusing on changes in Mn status, this study illustrated extension of two-dimensional μ-XRF scans to a three-dimensional geometry of Mn kinetics in the same area of leaves. The multi-element potential of this method was exemplified through the measurement of distributions and concentrations of K, Ca, Fe, Cu, and Zn within living plant leaves. This novel method and accompanying information on changes in Mn distribution showed the potential for microscopic, time-resolved, in vivo examination of changes in elemental distribution. We consider that this method will be of benefit for a wide range of studies, including functional characterization of molecular biology, examining changes in the distribution of nutrients, and understanding the movement and toxicity of contaminants

    Genome-wide identification and phenotypic characterization of seizure-associated copy number variations in 741,075 individuals

    Get PDF
    Copy number variants (CNV) are established risk factors for neurodevelopmental disorders with seizures or epilepsy. With the hypothesis that seizure disorders share genetic risk factors, we pooled CNV data from 10,590 individuals with seizure disorders, 16,109 individuals with clinically validated epilepsy, and 492,324 population controls and identified 25 genome-wide significant loci, 22 of which are novel for seizure disorders, such as deletions at 1p36.33, 1q44, 2p21-p16.3, 3q29, 8p23.3-p23.2, 9p24.3, 10q26.3, 15q11.2, 15q12-q13.1, 16p12.2, 17q21.31, duplications at 2q13, 9q34.3, 16p13.3, 17q12, 19p13.3, 20q13.33, and reciprocal CNVs at 16p11.2, and 22q11.21. Using genetic data from additional 248,751 individuals with 23 neuropsychiatric phenotypes, we explored the pleiotropy of these 25 loci. Finally, in a subset of individuals with epilepsy and detailed clinical data available, we performed phenome-wide association analyses between individual CNVs and clinical annotations categorized through the Human Phenotype Ontology (HPO). For six CNVs, we identified 19 significant associations with specific HPO terms and generated, for all CNVs, phenotype signatures across 17 clinical categories relevant for epileptologists. This is the most comprehensive investigation of CNVs in epilepsy and related seizure disorders, with potential implications for clinical practice

    Engagement and performance in a first year natural resource science course

    No full text
    Quantifying student engagement with online learning resources on virtual learning environments such as BlackBoard is important in understanding how these technologies enhance the student learning. In the present study, it was examined when, and how often, first-year students accessed lecture recordings, lecture slides, and lecture notes via BlackBoard, in an introductory natural resource course taken by both on campus students and remote students. The findings demonstrated that lecture recordings were not well utilized by studentsalthough only 58% of on campus students attended face-to-face lectures, less than 15% of absent students downloaded the missed lecture. Overall, more students downloaded lecture slides (an average of 63% per week) than notes (38%) or recordings (16%). Indeed, the average student downloaded only 1.1 types of the 3 online resources (recordings, slides, and notes) that were available each week, with 5.7% of students downloading all 3 types of resources, 23% downloading 2 types of resources, 42% downloading only 1 type of resource, and 29% downloading none of the 3 types of resources. Finally, remote students were more likely to download lecture notes and recordings than were on campus students. The information presented here is important in understanding student behaviour and engagement

    Alleviation of Al Toxicity by Si Is Associated with the Formation of Al-Si Complexes in Root Tissues of Sorghum

    No full text
    Silicon is reported to reduce the toxic effects of Al on root elongation but the in planta mechanism by which this occurs remains unclear. Using seedlings of soybean (Glycine max) and sorghum (Sorghum bicolor), we examined the effect of up to 2 mM Si on root elongation rate (RER) in Al-toxic nutrient solutions. Synchrotron-based low energy X-ray fluorescence (LEXRF) was then used for the in situ examination of the distribution of Al and Si within cross-sections cut from the apical tissues of sorghum roots. The addition of Si potentially increased RER in Al-toxic solutions, with RER being up to ca. 0.3 mm h-1 (14%) higher for soybean and ca. 0.2 mm h-1 (17%) higher for sorghum relative to solutions without added Si. This improvement in RER could not be attributed to a change in Al-chemistry of the bulk nutrient solution, nor was it due to a change in the concentration of Al within the apical (0-10 mm) root tissues. Using LEXRF to examine sorghum, it was demonstrated that in roots exposed to both Al and Si, much of the Al was co-located with Si in the mucigel and outer apoplast. These observations suggest that Si reduces the toxicity of Al in planta through formation of Al-Si complexes in mucigel and outer cellular tissues, thereby decreasing the binding of Al to the cell wall where it is known to inhibit wall loosening as required for cell elongation

    Effects of Ca, Cu, Al and La on pectin gel strength: Implications for plant cell walls

    No full text
    Rheology of Ca-pectate gels is widely studied, but the behaviour of pectate gels formed by Cu, Al and La is largely unknown. It is well known that gel strength increases with increasing Ca concentration, and it is hypothesised that this would also be the case for other cations. Pectins are a critical component of plant cell walls, imparting various physicochemical properties. Furthermore, the mechanism of metal toxicity in plants is hypothesised to be, in the short term, related to metal interactions with cell wall pectin. This study investigated the influence of Ca, Cu, Al and La ion concentrations at pH 4 on the storage modulus as a function of frequency for metal-pectin gels prepared from pectin (1%) with a degree of esterification of 30%. Gels were formed in situ over 6 d in metal chloride solution adjusted daily to pH 4. Cation concentration was varied to develop a relationship between gel strength and cation concentration. At similar levels of cation saturation, gel strength increased in the order of La < Ca ≤ Al ≪ Cu. The swelling of the gels also varied between cations with Ca gels being the most swollen
    corecore