19 research outputs found

    Neuropathologic Correlates of Hippocampal Atrophy in the Elderly: A Clinical, Pathologic, Postmortem MRI Study

    Get PDF
    The volume of the hippocampus measured with structural magnetic resonance imaging (MRI) is increasingly used as a biomarker for Alzheimer's disease (AD). However, the neuropathologic basis of structural MRI changes in the hippocampus in the elderly has not been directly assessed. Postmortem MRI of the aging human brain, combined with histopathology, could be an important tool to address this issue. Therefore, this study combined postmortem MRI and histopathology in 100 elderly subjects from the Rush Memory and Aging Project and the Religious Orders Study. First, to validate the information contained in postmortem MRI data, we tested the hypothesis that postmortem hippocampal volume is smaller in subjects with clinically diagnosed Alzheimer's disease compared to subjects with mild or no cognitive impairment, as observed in antemortem imaging studies. Subsequently, the relations of postmortem hippocampal volume to AD pathology, Lewy bodies, amyloid angiopathy, gross infarcts, microscopic infarcts, and hippocampal sclerosis were examined. It was demonstrated that hippocampal volume was smaller in persons with a clinical diagnosis of AD compared to those with no cognitive impairment (P = 2.6×10−7) or mild cognitive impairment (P = 9.6×10−7). Additionally, hippocampal volume was related to multiple cognitive abilities assessed proximate to death, with its strongest association with episodic memory. Among all pathologies investigated, the most significant factors related to lower hippocampal volume were shown to be AD pathology (P = 0.0018) and hippocampal sclerosis (P = 4.2×10−7). Shape analysis allowed for visualization of the hippocampal regions most associated with volume loss for each of these two pathologies. Overall, this investigation confirmed the relation of hippocampal volume measured postmortem to clinical diagnosis of AD and measures of cognition, and concluded that both AD pathology and hippocampal sclerosis affect hippocampal volume in old age, though the impacts of each pathology on the shape of the hippocampus may differ

    Lenalidomide reduces microglial activation and behavioral deficits in a transgenic model of Parkinson’s disease

    Get PDF
    BACKGROUND: Parkinson’s disease (PD) is one of the most common causes of dementia and motor deficits in the elderly. PD is characterized by the abnormal accumulation of the synaptic protein alpha-synuclein (α-syn) and degeneration of dopaminergic neurons in substantia nigra, which leads to neurodegeneration and neuroinflammation. Currently, there are no disease modifying alternatives for PD; however, targeting neuroinflammation might be a viable option for reducing motor deficits and neurodegeneration. Lenalidomide is a thalidomide derivative designed for reduced toxicity and increased immunomodulatory properties. Lenalidomide has shown protective effects in an animal model of amyotrophic lateral sclerosis, and its mechanism of action involves modulation of cytokine production and inhibition of NF-κB signaling. METHODS: In order to assess the effect of lenalidomide in an animal model of PD, mThy1-α-syn transgenic mice were treated with lenalidomide or the parent molecule thalidomide at 100 mg/kg for 4 weeks. RESULTS: Lenalidomide reduced motor behavioral deficits and ameliorated dopaminergic fiber loss in the striatum. This protective action was accompanied by a reduction in microgliosis both in striatum and hippocampus. Central expression of pro-inflammatory cytokines was diminished in lenalidomide-treated transgenic animals, together with reduction in NF-κB activation. CONCLUSION: These results support the therapeutic potential of lenalidomide for reducing maladaptive neuroinflammation in PD and related neuropathologies. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12974-015-0320-x) contains supplementary material, which is available to authorized users

    European clinical guidelines for Tourette syndrome and other tic disorders. Part II: pharmacological treatment

    Get PDF
    To develop a European guideline on pharmacologic treatment of Tourette syndrome (TS) the available literature was thoroughly screened and extensively discussed by a working group of the European Society for the Study of Tourette syndrome (ESSTS). Although there are many more studies on pharmacotherapy of TS than on behavioral treatment options, only a limited number of studies meets rigorous quality criteria. Therefore, we have devised a two-stage approach. First, we present the highest level of evidence by reporting the findings of existing Cochrane reviews in this field. Subsequently, we provide the first comprehensive overview of all reports on pharmacological treatment options for TS through a MEDLINE, PubMed, and EMBASE search for all studies that document the effect of pharmacological treatment of TS and other tic disorders between 1970 and November 2010. We present a summary of the current consensus on pharmacological treatment options for TS in Europe to guide the clinician in daily practice. This summary is, however, rather a status quo of a clinically helpful but merely low evidence guideline, mainly driven by expert experience and opinion, since rigorous experimental studies are scarce
    corecore