754 research outputs found

    How should we measure psychological resilience in sport performers?

    Get PDF
    Psychological resilience is important in sport because athletes must constantly withstand a wide range of pressures to attain and sustain high performance. To advance psychologists’ understanding of this area, there exists an urgent need to develop a sport-specific measure of resilience. The purpose of this paper is to review psychometric issues in resilience research and to discuss the implications for sport psychology. Drawing on the wider general psychology literature to inform the discussion, the narrative is divided into three main sections relating to resilience and its assessment: adversity, positive adaptation, and protective factors. The first section reviews the different ways that adversity has been measured and considers the potential problems of using items with varying degrees of controllability and risk. The second section discusses the different approaches to assessing positive adaptation and examines the issue of circularity pervasive in resilience research. The final section explores the various issues related to the assessment of protective factors drawing directly from current measures of resilience in other psychology sub-disciplines. The commentary concludes with key recommendations for sport psychology researchers seeking to develop a measure of psychological resilience in athletes

    ROTSE All Sky Surveys for Variable Stars I: Test Fields

    Full text link
    The ROTSE-I experiment has generated CCD photometry for the entire Northern sky in two epochs nightly since March 1998. These sky patrol data are a powerful resource for studies of astrophysical transients. As a demonstration project, we present first results of a search for periodic variable stars derived from ROTSE-I observations. Variable identification, period determination, and type classification are conducted via automatic algorithms. In a set of nine ROTSE-I sky patrol fields covering about 2000 square degrees we identify 1781 periodic variable stars with mean magnitudes between m_v=10.0 and m_v=15.5. About 90% of these objects are newly identified as variable. Examples of many familiar types are presented. All classifications for this study have been manually confirmed. The selection criteria for this analysis have been conservatively defined, and are known to be biased against some variable classes. This preliminary study includes only 5.6% of the total ROTSE-I sky coverage, suggesting that the full ROTSE-I variable catalog will include more than 32,000 periodic variable stars.Comment: Accepted for publication in AJ 4/00. LaTeX manuscript. (28 pages, 11 postscript figures and 1 gif

    A mathematical model of biofilm growth and spread within plant xylem: case study of Xylella fastidiosa in olive trees

    Get PDF
    Xylem-limited bacterial pathogens cause some of the most destructive plant diseases. Though imposed measures to control these pathogens are generally ineffective, even among susceptible taxa, some hosts can limit bacterial loads and symptom expression. Mechanisms by which this resistance is achieved are poorly understood. In particular, it is still unknown how differences in vascular structure may influence biofilm growth and spread within a host. To address this, we developed a novel theoretical framework to describe biofilm behaviour within xylem vessels, adopting a polymer-based modelling approach. We then parameterised the model to investigate the relevance of xylem vessel diameters on Xylella fastidiosa resistance among olive cultivars. The functionality of all vessels was severely reduced under infection, with hydraulic flow reductions of 2–3 orders of magnitude. However, results suggest wider vessels act as biofilm incubators; allowing biofilms to develop over a long time while still transporting them through the vasculature. By contrast, thinner vessels become blocked much earlier, limiting biofilm spread. Using experimental data on vessel diameter distributions, we were able to determine that a mechanism of resistance in the olive cultivar Leccino is a relatively low abundance of the widest vessels, limiting X. fastidiosa spread

    A high-throughput analysis of high-resolution X-ray CT images of stems of olive and citrus plants resistant and susceptible to Xylella fastidiosa

    Get PDF
    The bacterial plant pathogen Xylella fastidiosa causes disease in several globally important crops. However, some cultivars harbour reduced bacterial loads and express few symptoms. Evidence considering plant species in isolation suggests xylem structure influences cultivar susceptibility to X. fastidiosa. We test this theory more broadly by analysing high-resolution synchrotron X-ray computed tomography of healthy and infected plant vasculature from two taxonomic groups containing susceptible and resistant varieties: two citrus cultivars (sweet orange cv. Pera, tangor cv. Murcott) and two olive cultivars (Koroneiki, Leccino). Results found the susceptible plants had more vessels than resistant ones, which could promote within-host pathogen spread. However, features associated with resistance were not shared by citrus and olive. While xylem vessels in resistant citrus stems had comparable diameters to those in susceptible plants, resistant olives had narrower vessels that could limit biofilm spread. And while differences among olive cultivars were not detected, results suggest greater vascular connectivity in resistant compared to susceptible citrus plants. We hypothesize that this provides alternate flow paths for sustaining hydraulic functionality under infection. In summary, this work elucidates different physiological resistance mechanisms between two taxonomic groups, while supporting the existence of an intertaxonomical metric that could speed up the identification of candidate-resistant plants.</p

    New physics, the cosmic ray spectrum knee, and pppp cross section measurements

    Full text link
    We explore the possibility that a new physics interaction can provide an explanation for the knee just above 10610^6 GeV in the cosmic ray spectrum. We model the new physics modifications to the total proton-proton cross section with an incoherent term that allows for missing energy above the scale of new physics. We add the constraint that the new physics must also be consistent with published pppp cross section measurements, using cosmic ray observations, an order of magnitude and more above the knee. We find that the rise in cross section required at energies above the knee is radical. The increase in cross section suggests that it may be more appropriate to treat the scattering process in the black disc limit at such high energies. In this case there may be no clean separation between the standard model and new physics contributions to the total cross section. We model the missing energy in this limit and find a good fit to the Tibet III cosmic ray flux data. We comment on testing the new physics proposal for the cosmic ray knee at the Large Hadron Collider.Comment: 17 pages, 4 figure

    Culture change in elite sport performance teams: Examining and advancing effectiveness in the new era

    Get PDF
    Reflecting the importance of optimizing culture for elite teams, Fletcher and Arnold (2011) recently suggested the need for expertise in culture change. Acknowledging the dearth of literature on the specific process, however, the potential effectiveness of practitioners in this area is unknown. The present paper examines the activity's precise demands and the validity of understanding in sport psychology and organizational research to support its delivery. Recognizing that sport psychologists are being increasingly utilized by elite team management, initial evidence-based guidelines are presented. Finally, to stimulate the development of ecologically valid, practically meaningful knowledge, the paper identifies a number of future research directions

    Observation of contemporaneous optical radiation from a gamma-ray burst

    Full text link
    The origin of gamma-ray bursts (GRBs) has been enigmatic since their discovery. The situation improved dramatically in 1997, when the rapid availability of precise coordinates for the bursts allowed the detection of faint optical and radio afterglows - optical spectra thus obtained have demonstrated conclusively that the bursts occur at cosmological distances. But, despite efforts by several groups, optical detection has not hitherto been achieved during the brief duration of a burst. Here we report the detection of bright optical emission from GRB990123 while the burst was still in progress. Our observations begin 22 seconds after the onset of the burst and show an increase in brightness by a factor of 14 during the first 25 seconds; the brightness then declines by a factor of 100, at which point (700 seconds after the burst onset) it falls below our detection threshold. The redshift of this burst, approximately 1.6, implies a peak optical luminosity of 5 times 10^{49} erg per second. Optical emission from gamma-ray bursts has been generally thought to take place at the shock fronts generated by interaction of the primary energy source with the surrounding medium, where the gamma-rays might also be produced. The lack of a significant change in the gamma-ray light curve when the optical emission develops suggests that the gamma-rays are not produced at the shock front, but closer to the site of the original explosion.Comment: 10 pages, 2 figures. Accepted for publication in Nature. For additional information see http://www.umich.edu/~rotse

    Rapid Optical Followup Observations of SGR Events with ROTSE-I

    Get PDF
    In order to observe nearly simultaneous emission from Gamma-ray Bursts (GRBs), the Robotic Optical Transient Search Experiment (ROTSE) receives triggers via the GRB Coordinates Network (GCN). Since beginning operations in March, 1998, ROTSE has also taken useful data for 10 SGR events: 8 from SGR 1900+14 and 2 from SGR 1806-20. We have searched for new or variable sources in the error regions of these SGRs and no optical counterparts were observed. Limits are in the range m_ROTSE ~ 12.5 - 15.5 during the period 20 seconds to 1 hour after the observed SGR events.Comment: 16 pages, 6 figures, accepted for publication in the Astrophysical Journa
    • …
    corecore