230 research outputs found

    Enceladus: Biosignatures

    Get PDF
    Saturn's moon Enceladus is a new world for Astrobiology. Through the study of Enceladus' plumes new insights into its habitability will be gained. The four core parameters for life include: water, carbon, nitrogen, and energy; all were found in the plume. Carbon and nitrogen in the plume exist in forms easily usable by biological systems (CH4, HCN, NH3, H2, CO2, and organics up to C6). The first step to search for evidence of life is to define potential biosignatures for Enceladus

    Retinal microvascular network attenuation in Alzheimer's disease

    Get PDF
    AbstractIntroductionCerebral small-vessel disease has been implicated in the development of Alzheimer's disease (AD). The retinal microvasculature enables the noninvasive visualization and evaluation of the systemic microcirculation. We evaluated retinal microvascular parameters in a case-control study of AD patients and cognitively normal controls.MethodsRetinal images were computationally analyzed and quantitative retinal parameters (caliber, fractal dimension, tortuosity, and bifurcation) measured. Regression models were used to compute odds ratios (OR) and confidence intervals (CI) for AD with adjustment for confounders.ResultsRetinal images were available in 213 AD participants and 294 cognitively normal controls. Persons with lower venular fractal dimension (OR per standard deviation [SD] increase, 0.77 [CI: 0.62–0.97]) and lower arteriolar tortuosity (OR per SD increase, 0.78 [CI: 0.63–0.97]) were more likely to have AD after appropriate adjustment.DiscussionPatients with AD have a sparser retinal microvascular network and retinal microvascular variation may represent similar pathophysiological events within the cerebral microvasculature of patients with AD

    High-Redshift Quasars Found in Sloan Digital Sky Survey Commissioning Data II: The Spring Equatorial Stripe

    Get PDF
    This is the second paper in a series aimed at finding high-redshift quasars from five-color (u'g'r'i'z') imaging data taken along the Celestial Equator by the Sloan Digital Sky Survey (SDSS) during its commissioning phase. In this paper, we present 22 high-redshift quasars (z>3.6) discovered from ~250 deg^2 of data in the spring Equatorial Stripe, plus photometry for two previously known high-redshift quasars in the same region of sky. Our success rate of identifying high-redshift quasars is 68%. Five of the newly discovered quasars have redshifts higher than 4.6 (z=4.62, 4.69, 4.70, 4.92 and 5.03). All the quasars have i* < 20.2 with absolute magnitude -28.8 < M_B < -26.1 (h=0.5, q_0=0.5). Several of the quasars show unusual emission and absorption features in their spectra, including an object at z=4.62 without detectable emission lines, and a Broad Absorption Line (BAL) quasar at z=4.92.Comment: 28 pages, AJ in press (Jan 2000), final version with minor changes; high resolution finding charts available at http://www.astro.princeton.edu/~fan/paper/qso2.htm

    Weak Lensing with SDSS Commissioning Data: The Galaxy-Mass Correlation Function To 1/h Mpc

    Full text link
    (abridged) We present measurements of galaxy-galaxy lensing from early commissioning imaging data from the Sloan Digital Sky Survey (SDSS). We measure a mean tangential shear around a stacked sample of foreground galaxies in three bandpasses out to angular radii of 600'', detecting the shear signal at very high statistical significance. The shear profile is well described by a power-law. A variety of rigorous tests demonstrate the reality of the gravitational lensing signal and confirm the uncertainty estimates. We interpret our results by modeling the mass distributions of the foreground galaxies as approximately isothermal spheres characterized by a velocity dispersion and a truncation radius. The velocity dispersion is constrained to be 150-190 km/s at 95% confidence (145-195 km/s including systematic uncertainties), consistent with previous determinations but with smaller error bars. Our detection of shear at large angular radii sets a 95% confidence lower limit s>140â€Čâ€Čs>140^{\prime\prime}, corresponding to a physical radius of 260h−1260h^{-1} kpc, implying that galaxy halos extend to very large radii. However, it is likely that this is being biased high by diffuse matter in the halos of groups and clusters. We also present a preliminary determination of the galaxy-mass correlation function finding a correlation length similar to the galaxy autocorrelation function and consistency with a low matter density universe with modest bias. The full SDSS will cover an area 44 times larger and provide spectroscopic redshifts for the foreground galaxies, making it possible to greatly improve the precision of these constraints, measure additional parameters such as halo shape, and measure the properties of dark matter halos separately for many different classes of galaxies.Comment: 28 pages, 11 figures, submitted to A

    Neutrino Interactions at Ultrahigh Energies

    Get PDF
    We report new calculations of the cross sections for deeply inelastic neutrino-nucleon scattering at neutrino energies between 10^{9}\ev and 10^{21}\ev. We compare with results in the literature and assess the reliability of our predictions. For completeness, we briefly review the cross sections for neutrino interactions with atomic electrons, emphasizing the role of the WW-boson resonance in Μˉee\bar{\nu}_{e}e interactions for neutrino energies in the neighborhood of 6.3\pev. Adopting model predictions for extraterrestrial neutrino fluxes from active galactic nuclei, gamma-ray bursters, and the collapse of topological defects, we estimate event rates in large-volume water \v{C}erenkov detectors and large-area ground arrays.Comment: 32 pages, 11 figures, uses RevTeX and boxedep
    • 

    corecore