41 research outputs found

    Structure and Magnetism of well-defined cobalt nanoparticles embedded in a niobium matrix

    Full text link
    Our recent studies on Co-clusters embedded in various matrices reveal that the co-deposition technique (simultaneous deposition of two beams : one for the pre-formed clusters and one for the matrix atoms) is a powerful tool to prepare magnetic nanostructures with any couple of materials even though they are miscible. We study, both sharply related, structure and magnetism of the Co/Nb system. Because such a heterogeneous system needs to be described at different scales, we used microscopic and macroscopic techniques but also local selective absorption ones. We conclude that our clusters are 3 nm diameter f.c.c truncated octahedrons with a pure cobalt core and a solid solution between Co and Nb located at the interface which could be responsible for the magnetically inactive monolayers we found. The use of a very diluted Co/Nb film, further lithographed, would allow us to achieve a pattern of microsquid devices in view to study the magnetic dynamics of a single-Co cluster.Comment: 7 TeX pages, 9 Postscript figures, detailed heading adde

    Оценка надежности высоконадежных систем с учетом ЗИП

    Get PDF
    Предложены приближенные верхние и нижние оценки коэффициента готовности высоконадежной восстанавливаемой системы со структурной избыточностью. Полученные расчетные соотношения могут использоваться для оценки надежности высоконадежных систем с учетом различных стратегий пополнения ЗИП

    Professor William P. Blake

    No full text
    Professor William P. Blake seated at his desk in his classroom. "Prof. Wm. P. Blake at the age of 90. Taught geology at the U of A in 1902. My geology professor," rec'd from Walter E. Hodsell Dec. '59. [Professor Blake actually died at age 83 in 1910

    Structural study of bimetallic CoxRh1xCo_xRh_{1-x} nanoparticles: Size and composition effects

    No full text
    The structure of ultrafine bimetallic CoxRh1?x nanoparticles synthesized in mild conditions by codecomposition of organometallic precursors in the presence of a polymer or a ligand has been studied using high-resolution electron microscopy and wide-angle x-ray scattering techniques. While pure rhodium particles exhibit the main structural features of a face centered cubic (fcc), alloying with cobalt induces a progressive loss of periodicities, leading in high-cobalt-content particles to a polytetrahedral structure close to the one already encountered in pure-cobalt particles. When increasing the synthesis temperature, the polytetrahedral structure remains remarkably stable, while particles with higher rhodium content clearly evolve towards perfect fcc. Increasing the size of the particles up to 5–6nm stabilizes the structural phases encountered in the phase diagram of the bulk alloy. Different element-sensitive techniques, x-ray absorption spectroscopy (XANES and EXAFS) and energy-filtering transmission electron microscopy, have also been implemented in order to get chemical information. Evidence is given for a cobalt surface segregation in these bimetallic particles, highly favorable for magnetic-moment enhancement
    corecore