6,308 research outputs found

    Computer program documentation for the pasture/range condition assessment processor

    Get PDF
    The processor which drives for the RANGE software allows the user to analyze LANDSAT data containing pasture and rangeland. Analysis includes mapping, generating statistics, calculating vegetative indexes, and plotting vegetative indexes. Routines for using the processor are given. A flow diagram is included

    Self-pulsing dynamics in a cavity soliton laser

    Get PDF
    The dynamics of a broad-area vertical-cavity surface-emitting laser (VCSEL) with frequency-selective feedback supporting bistable spatial solitons is analyzed experimentally and theoretically. The transient dynamics of a switch-on of a soliton induced by an external optical pulse shows strong self-pulsing at the external-cavity round-trip time with at least ten modes excited. The numerical analysis indicates an even broader bandwidth and a transient sweep of the center frequency. It is argued that mode-locking of spatial solitons is an interesting and viable way to achieve three-dimensional, spatio-temporal self-localization and that the transients observed are preliminary indications of a transient cavity light bullet in the dynamics, though on a non negligible background

    Field-Induced Magnetic and Structural Domain Alignment in PrO2

    Full text link
    We present a neutron diffraction study of the magnetic structure of single crystal PrO2 under applied fields of 0-6 T. As the field is increased, changes are observed in the magnetic Bragg intensities. These changes are found to be irreversible when the field is reduced, but the original intensities can be recovered by heating to T > 122 K, then re-cooling in zero field. The antiferromagnetic ordering temperature TN = 13.5 K and the magnetic periodicity are unaffected by the applied field. We also report measurements of the magnetic susceptibility of single crystal PrO2 under applied fields of 0-7 T. These show strong anisotropy, as well as an anomaly at T = 122 +/- 2 K which coincides with the temperature TD = 120 +/- 2 K at which a structural distortion occurs. For fields applied along the [100] direction the susceptibility increases irreversibly with field in the temperature range TN < T < TD. However, for fields along [110] the susceptibility is independent of field in this range. We propose structural domain alignment, which strongly influences the formation of magnetic domains below TN, as the mechanism behind these changes.Comment: 11 pages, 13 figures, 5 tables. Minor typographical changes in v

    Frequency and phase locking of laser cavity solitons

    Get PDF
    Self-localized states or dissipative solitons have the freedom of translation in systems with a homogeneous background. When compared to cavity solitons in coherently driven nonlinear optical systems, laser cavity solitons have the additional freedom of the optical phase. We explore the consequences of this additional Goldstone mode and analyse experimentally and numerically frequency and phase locking of laser cavity solitons in a vertical-cavity surface-emitting laser with frequency-selective feedback. Due to growth-related variations of the cavity resonance, the translational symmetry is usually broken in real devices. Pinning to different defects means that separate laser cavity solitons have different frequencies and are mutually incoherent. If two solitons are close to each other, however, their interaction leads to synchronization due to phase and frequency locking with strong similarities to the Adler-scenario of coupled oscillators

    Spin gaps and magnetic structure of NaxCoO2

    Full text link
    We present two experiments that provide information on spin anisotropy and the magnetic structure of NaxCoO2. First, we report low-energy neutron inelastic scattering measurements of the zone-center magnetic excitations in the magnetically ordered phase of Na0.75CoO2. The energy spectra suggest the existence of two gaps, and are very well fitted by a spin-wave model with both in-plane and out-of-plane anisotropy terms. The gap energies decrease with increasing temperature and both gaps are found to have closed when the temperature exceeds the magnetic ordering temperature T_m~22 K. Secondly, we present neutron diffraction studies of Na0.85CoO2 with a magnetic field applied approximately parallel to the c axis. For fields in excess of ~8T a magnetic Bragg peak was observed at the (0,0,3) position in reciprocal space. We interpret this as a spin-flop transition of the A-type antiferromagnetic structure, and we show that the spin-flop field is consistent with the size of the anisotropy gap.Comment: 9 pages, 7 figure

    Confinement of the Sun's interior magnetic field: some exact boundary-layer solutions

    Full text link
    High-latitude laminar confinement of the Sun's interior magnetic field is shown to be possible, as originally proposed by Gough and McIntyre (1998) but contrary to a recent claim by Brun and Zahn (A&A 2006). Mean downwelling as weak as 2x10^-6cm/s -- gyroscopically pumped by turbulent stresses in the overlying convection zone and/or tachocline -- can hold the field in advective-diffusive balance within a confinement layer of thickness scale ~ 1.5Mm ~ 0.002 x (solar radius) while transmitting a retrograde torque to the Ferraro-constrained interior. The confinement layer sits at the base of the high-latitude tachocline, near the top of the radiative envelope and just above the `tachopause' marking the top of the helium settling layer. A family of exact, laminar, frictionless, axisymmetric confinement-layer solutions is obtained for uniform downwelling in the limit of strong rotation and stratification. A scale analysis shows that the flow is dynamically stable and the assumption of laminar flow realistic. The solution remains valid for downwelling values of the order of 10^-5cm/s but not much larger. This suggests that the confinement layer may be unable to accept a much larger mass throughput. Such a restriction would imply an upper limit on possible internal field strengths, perhaps of the order of hundreds of gauss, and would have implications also for ventilation and lithium burning. The solutions have interesting chirality properties not mentioned in the paper owing to space restrictions, but described at http://www.atmos-dynamics.damtp.cam.ac.uk/people/mem/papers/SQBO/solarfigure.htmlComment: 6 pages, 3 figures, to appear in conference proceedings: Unsolved Problems in Stellar Physic

    Field induced magnetic order in the frustrated magnet Gadolinium Gallium Garnet

    Full text link
    Gd3Ga5O12, (GGG), has an extraordinary magnetic phase diagram, where no long range order is found down to 25 mK despite \Theta_CW \approx 2 K. However, long range order is induced by an applied field of around 1 T. Motivated by recent theoretical developments and the experimental results for a closely related hyperkagome system, we have performed neutron diffraction measurements on a single crystal sample of GGG in an applied magnetic field. The measurements reveal that the H-T phase diagram of GGG is much more complicated than previously assumed. The application of an external field at low T results in an intensity change for most of the magnetic peaks which can be divided into three distinct sets: ferromagnetic, commensurate antiferromagnetic, and incommensurate antiferromagnetic. The ferromagnetic peaks (e.g. (112), (440) and (220)) have intensities that increase with the field and saturate at high field. The antiferromagnetic reflections have intensities that grow in low fields, reach a maximum at an intermediate field (apart from the (002) peak which shows two local maxima) and then decrease and disappear above 2 T. These AFM peaks appear, disappear and reach maxima in different fields. We conclude that the competition between magnetic interactions and alternative ground states prevents GGG from ordering in zero field. It is, however, on the verge of ordering and an applied magnetic field can be used to crystallise ordered components. The range of ferromagnetic and antiferromagnetic propagation vectors found reflects the complex frustration in GGG.Comment: 6 pages, 7 figures, HFM 2008 conference pape

    Noise spectroscopy of optical microcavity

    Full text link
    The intensity noise spectrum of the light passed through an optical microcavity is calculated with allowance for thermal fluctuations of its thickness. The spectrum thus obtained reveals a peak at the frequency of acoustic mode localized inside the microcavity and depends on the size of the illuminated area. The estimates of the noise magnitude show that it can be detected using the up-to-date noise spectroscopy technique.Comment: 10 pages, 1 figur
    corecore