276 research outputs found

    Resistance training in humans and mechanical overload in rodents do not elevate muscle protein lactylation

    Get PDF
    Although several reports have hypothesized that exercise may increase skeletal muscle protein lactylation, empirical evidence in humans is lacking. Thus, we adopted a multifaceted approach to examine if acute and subchronic resistance training (RT) altered skeletal muscle protein lactylation levels. In mice, we also sought to examine if surgical ablation-induced plantaris hypertrophy coincided with increases in muscle protein lactylation. To examine acute responses, participants’ blood lactate concentrations were assessed before, during, and after eight sets of an exhaustive lower body RT bout (n = 10 trained college-aged men). Vastus lateralis biopsies were also taken before, 3-h post, and 6-h post-exercise to assess muscle protein lactylation. To identify training responses, another cohort of trained college-aged men (n = 14) partook in 6 weeks of lower-body RT (3x/week) and biopsies were obtained before and following the intervention. Five-month-old C57BL/6 mice were subjected to 10 days of plantaris overload (OV, n = 8) or served as age-matched sham surgery controls (Sham, n = 8). Although acute resistance training significantly increased blood lactate responses ~7.2- fold (p \u3c 0.001), cytoplasmic and nuclear protein lactylation levels were not significantly altered at the post-exercise time points, and no putative lactylation-dependent mRNA was altered following exercise. Six weeks of RT did not alter cytoplasmic protein lactylation (p = 0.800) despite significantly increasing VL muscle size (+3.5%, p=0.037), and again, no putative lactylation-dependent mRNA was significantly affected by training. Plantaris muscles were larger in OV versus Sham mice (+43.7%, p \u3c 0.001). However, cytoplasmic protein lactylation was similar between groups (p = 0.369), and nuclear protein lactylation was significantly lower in OV versus Sham mice (p \u3c 0.001). The current null findings, along with other recent null findings in the literature, challenge the thesis that lactate has an appreciable role in promoting skeletal muscle hypertrophy

    A Racist Attack Managing Complex Relationships with Traumatised Service Users – a Psychodynamic Approach

    Get PDF
    Notions of whiteness, white supremacy and racial hatred such as the recent multiple racist murders by a white supremacist in New Zealand are at the forefront of public consciousness. How does whiteness and racism play out in a clinical and social welfare context? This article illustrates the impact of trauma on a vulnerable young white woman who although was not the direct target of a racist assault was left traumatized by witnessing it. It discusses how initially she sought refuge in a racist solution synonymous with a psychic retreat to her own detriment. Working with such complex, unconscious and bewildering dynamics are extremely challenging for clinicians. It describes the impact of these dynamics on a clinician of colour who attempted to work with this young woman in a child and adolescent mental health service after the family were referred as a consequence of her assaulting her child shortly after witnessing the racist attack. The unconscious responses to trauma and challenges for clinicians and clinician of colour in particular when working with racism in the consulting room are also discussed

    OPTIMA: A prospective randomized trial to validate the predictive utility and cost-effectiveness of gene expression test-directed chemotherapy decisions in early breast cancer

    Get PDF
    Background: Multi-parameter gene expression assays (MPAs) are widely used to estimate individual patient residual risk in hormone-sensitive HER2-negative node-negative early breast cancer, allowing patients with low risk to safely avoid chemotherapy. Evidence for MPA use in node-positive breast cancer is limited. OPTIMA (Optimal Personalised Treatment of early breast cancer usIng Multi-parameter Analysis) aims to validate MPA’s as predictors of chemotherapy sensitivity in a largely node-positive breast cancer population

    Resistance training in humans and mechanical overload in rodents do not elevate muscle protein lactylation

    Get PDF
    Although several reports have hypothesized that exercise may increase skeletal muscle protein lactylation, empirical evidence in humans is lacking. Thus, we adopted a multi-faceted approach to examine if acute and subchronic resistance training (RT) altered skeletal muscle protein lactylation levels. In mice, we also sought to examine if surgical ablation-induced plantaris hypertrophy coincided with increases in muscle protein lactylation. To examine acute responses, participants’ blood lactate concentrations were assessed before, during, and after eight sets of an exhaustive lower body RT bout (n = 10 trained college-aged men). Vastus lateralis biopsies were also taken before, 3-h post, and 6-h post-exercise to assess muscle protein lactylation. To identify training responses, another cohort of trained college-aged men (n = 14) partook in 6 weeks of lower-body RT (3x/week) and biopsies were obtained before and following the intervention. Five-month-old C57BL/6 mice were subjected to 10 days of plantaris overload (OV, n = 8) or served as age-matched sham surgery controls (Sham, n = 8). Although acute resistance training significantly increased blood lactate responses ∌7.2-fold (p < 0.001), cytoplasmic and nuclear protein lactylation levels were not significantly altered at the post-exercise time points, and no putative lactylation-dependent mRNA was altered following exercise. Six weeks of RT did not alter cytoplasmic protein lactylation (p = 0.800) despite significantly increasing VL muscle size (+3.5%, p = 0.037), and again, no putative lactylation-dependent mRNA was significantly affected by training. Plantaris muscles were larger in OV versus Sham mice (+43.7%, p < 0.001). However, cytoplasmic protein lactylation was similar between groups (p = 0.369), and nuclear protein lactylation was significantly lower in OV versus Sham mice (p < 0.001). The current null findings, along with other recent null findings in the literature, challenge the thesis that lactate has an appreciable role in promoting skeletal muscle hypertrophy
    • 

    corecore