7,636 research outputs found

    High Reynolds number tests of the CAST 10-2/DOA 2 airfoil in the Langley 0.3-meter transonic cryogenic tunnel, phase 1

    Get PDF
    A wind tunnel investigation of an advanced technology airfoil, the CAST 10-2/DOA 2, was conducted in the Langley 0.3 meter Transonic Cryogenic Tunnel (0.3 m TCT). This was the first of a series of tests conducted in a cooperative National Aeronautics and Space Administration (NASA) and the Deutsche Forschungs- und Versuchsanstalt fur Luft- und Raumfahrt e. V. (DFVLR) airfoil research program. Test temperature was varied from 280 K to 100 K to pressures from slightly above 1 to 5.8 atmospheres. Mach number was varied from 0.60 to 0.80, and the Reynolds number (based on airfoil chord) was varied from 4 x 10 to the 8th power to 45 x 10 to the 6th power. This report presents the experimental aerodynamic data obtained for the airfoil and includes descriptions of the airfoil model, the 0.3 m TCT, the test instrumentation, and the testing procedures

    Lunar particle shadows and boundary layer experiment: Plasma and energetic particles on the Apollo 15 and 16 subsatellites

    Get PDF
    The lunar particle shadows and boundary layer experiments aboard the Apollo 15 and 16 subsatellites and scientific reduction and analysis of the data to date are discussed with emphasis on four major topics: solar particles; interplanetry particle phenomena; lunar interactions; and topology and dynamics of the magnetosphere at lunar orbit. The studies of solar and interplanetary particles concentrated on the low energy region which was essentially unexplored, and the studies of lunar interaction pointed up the transition from single particle to plasma characteristics. The analysis concentrated on the electron angular distributions as highly sensitive indicators of localized magnetization of the lunar surface. Magnetosphere experiments provided the first electric field measurements in the distant magnetotail, as well as comprehensive low energy particle measurements at lunar distance

    Ferromagnetic imprinting of spin polarization in a semiconductor

    Full text link
    We present a theory of the imprinting of the electron spin coherence and population in an n-doped semiconductor which forms a junction with a ferromagnet. The reflection of non-equilibrium semiconductor electrons at the interface provides a mechanism to manipulate the spin polarization vector. In the case of unpolarized excitation, this ballistic effect produces spontaneous electron spin coherence and nuclear polarization in the semiconductor, as recently observed by time-resolved Faraday rotation experiments. We investigate the dependence of the spin reflection on the Schottky barrier height and the doping concentration in the semiconductor and suggest control mechanisms for possible device applications.Comment: 4 pages with 2 figure

    Film calibration for the Skylab/ATM S-056 X-ray telescope

    Get PDF
    The sensitometry and film calibration effort for the Skylab/ATM S-056 X-ray telescope is summarized. The apparatus and procedures used are described together with the two types of flight film used, Kodak SO-212 and SO-242. The sensitometry and processing of the flight film are discussed, and the results are presented in the form of the characteristic curves and related data. The use of copy films is also discussed

    Population control of 2s-2p transitions in hydrogen

    Full text link
    We consider the time evolution of the occupation probabilities for the 2s-2p transition in a hydrogen atom interacting with an external field, V(t). A two-state model and a dipole approximation are used. In the case of degenerate energy levels an analytical solution of the time-dependent Shroedinger equation for the probability amplitudes exists. The form of the solution allows one to choose the ratio of the field amplitude to its frequency that leads to temporal trapping of electrons in specific states. The analytic solution is valid when the separation of the energy levels is small compared to the energy of the interacting radiation.Comment: 6 pages, 3 figure

    Exact calculation of spectral properties of a particle interacting with a one dimensional fermionic system

    Full text link
    Using the Bethe ansatz analysis as was reformulated by Edwards, we calculate the spectral properties of a particle interacting with a bath of fermions in one dimension for the case of equal particle-fermion masses. These are directly related to singularities apparent in optical experiments in one dimensional systems. The orthogonality catastrophe for the case of an infinite particle mass survives in the limit of equal masses. We find that the exponent β\beta of the quasiparticle weight, ZNβZ\simeq N^{-\beta} is different for the two cases, and proportional to their respective phaseshifts at the Fermi surface; we present a simple physical argument for this difference. We also show that these exponents describe the low energy behavior of the spectral function, for repulsive as well as attractive interaction.Comment: 22 pages + 1 postscript figure, REVTE

    Personality Variation in Little Brown Bats

    Get PDF
    Animal personality or temperament refers to individual differences in behaviour that are repeatable over time and across contexts. Personality has been linked to life-history traits, energetic traits and fitness, with implications for the evolution of behaviour. Personality has been quantified for a range of taxa (e.g., fish, songbirds, small mammals) but, so far, there has been little work on personality in bats, despite their diversity and potential as a model taxon for comparative studies. We used a novel environment test to quantify personality in little brown bats (Myotis lucifugus) and assess the short-term repeatability of a range of behaviours. We tested the hypothesis that development influences values of personality traits and predicted that trait values associated with activity would increase between newly volant, pre-weaning young-of-the-year (YOY) and more mature, self-sufficient YOY. We identified personality dimensions that were consistent with past studies of other taxa and found that these traits were repeatable over a 24-hour period. Consistent with our prediction, older YOY captured at a fall swarming site prior to hibernation had higher activity scores than younger YOY bats captured at a maternity colony, suggesting that personality traits vary as development progresses in YOY bats. Thus, we found evidence of short-term consistency of personality within individuals but with the potential for temporal flexibility of traits, depending on age."Funding was provided by a Natural Sciences and Engineering Research Council (NSERC) Canada Graduate Scholarship to AKM and post-doctoral fellowship to LPM as well as grants to CKRW from NSERC, the Canada Foundation for Innovation, the Manitoba Research and Innovation Fund and Manitoba Hydro Forest Enhancement Program."https://journals.plos.org/plosone/article?id=10.1371/journal.pone.008023

    Neural correlates of visuospatial working memory in the ‘at-risk mental state’

    Get PDF
    Background. Impaired spatial working memory (SWM) is a robust feature of schizophrenia and has been linked to the risk of developing psychosis in people with an at-risk mental state (ARMS). We used functional magnetic resonance imaging (fMRI) to examine the neural substrate of SWM in the ARMS and in patients who had just developed schizophrenia. Method. fMRI was used to study 17 patients with an ARMS, 10 patients with a first episode of psychosis and 15 agematched healthy comparison subjects. The blood oxygen level-dependent (BOLD) response was measured while subjects performed an object–location paired-associate memory task, with experimental manipulation of mnemonic load. Results. In all groups, increasing mnemonic load was associated with activation in the medial frontal and medial posterior parietal cortex. Significant between-group differences in activation were evident in a cluster spanning the medial frontal cortex and right precuneus, with the ARMS groups showing less activation than controls but greater activation than first-episode psychosis (FEP) patients. These group differences were more evident at the most demanding levels of the task than at the easy level. In all groups, task performance improved with repetition of the conditions. However, there was a significant group difference in the response of the right precuneus across repeated trials, with an attenuation of activation in controls but increased activation in FEP and little change in the ARMS. Conclusions. Abnormal neural activity in the medial frontal cortex and posterior parietal cortex during an SWM task may be a neural correlate of increased vulnerability to psychosis
    corecore