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ABSTRACT

This report describes the lunar particle shadows and boundary layer

experiments aboard the Apollo 15 and 16 subsatellites, and summarizes the

scientific reduction and analysis of the data to date. The analysis has con-

centrated on fot . main areas: solar particles, interplanetry particle

phenomena, lunar interactions,and topology and dynamics of the magneto-

sphere at lunar orbit.

The studies of solar and interplanetary particles have concentrated

on the low energy region which has been essentially unexplored.

The studies of lunar interaction have pointed up the transition from

single particle to plasma characteristics. Very recently the analysis has

concentrated on the electron angular distributions as highly sensitive '

indicators of localized magnetization of the lunar surface.

In the magnetosphere the experiments have provided the first

electric field measurements in the distant magnetotail as well as compre-

hensive low energy particle measurements at lunar distance.

It should be emphasized that the analysis is entering the phase

of definitive and comprehensive results.

A substantial portion of the reduction and analysis has been carried

out by a graduate student, Mr. R. E. vcGuire. His Ph. D thesis will be

based results from these experiments.
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Figure Captions

1. Functional block diagram of the subsatellite.

2. One of the solid-state telescopes used on the subsatellite to

detect electrons and protons in the energy range 20-4000 keV.

The otner telescope is identical except it has no foil. The

foil has a very large effect on protons in the range of interest,

and thus particle identification is possible.

3. Telescope electronics functional block diagram.

4. Si detector response to electrons as a function of energy.

5. The largest electrostatic analyzer (C5) flown on the sub-

satellite. It measures electrons in the energy interval

13. 5-15 keV with high sensitivity and is sectored by using

the magnetometer output as reference. The other analyzers

are similar, but they measure electrons at lower energies.

6. Analyzer serration design.

7. Electron-multiplier/photomultipler amplifier discriminator.

8. True counts N T versus measured counts N A with telemetry

conversion error.

9. Sample 2 hour plot.

10. Sample 1 day plot.

11. Sample 10 day plot.

12. Sample distributions for various true average .count rates

(NT) without and with the telemetry conversion error.

13. The function NA = f(NT).
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14. Flow diagram of the distribution recognition procedure. Entry point

to the routine is B. Seven data points are supplied, N(1) through N(7),

with N(4), the point to be corrected. AVG is the average of N(1)

through N(7). The exit +16 indicates N(4) should be N(4) +16 while

+.6' indirates N(4) is correct as is.

15. Flow diagram of the correction logic. Input consists of an array

in a matrix N2 . The entry points P, +16, +Y6 are defined with

respect to Figure 14. AVG is the average in either of the routines

of the seven points at a given time.

16. Accumulator time scales compared to readout time scales in TSN

mode.

17. Sample plot of MRO and times versus orbit number from start of

auto cycle.

18. Schematic orientations of the analyzers, magnetometer, and sun

sensor.
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I. Particles and Fields Subsatellite

On August 4, 1971, the Apollo 15 astronauts launched a small

scientific spacecraft into lunar orbit. The Apollo 15 Particles and Fields

Subsatellite (PFS-1) provided about 6 months of data coverage before two

successive electronic failures in February, 1972 caused the loss of most

of the data channels. The surviving data channels were monitored inter-

mittently until June, 1972 and more or less continuously after that through

January, 1973, when ground support was terminated.

A second satellite (PFS-2) was launched by the Apollo 16 astronauts

on April 24, 1972 and provided good data until May 29, 1972 when it impacted

on the back side of the moon.

These small scientific spacecraft have a mass of about 38 kg and a

length of 78 cm. The cross section is hexagonal, and the distance between

opposite corners is about 36 cm. The satellite has three deployable booms

hinged from one of the end platforms. One of the booms carries the two-

axis fluxgate magnetometer sensor, whereas the other two carry tip

masses to provide balance and a proper ratio of moment of inertia to

avoid precession. The satellite has a short cylindrical section attached

to the service and instrument module of the Apollo CSM. A compression

spring pushes the satellite away and at the same time imparts a spin.

Precessional and nutational motions imparted by the launch and boom

deployment were removed by a wobble damper. The spin axes of the

satellites were to be pointed normal to the ecliptic plane. Very precise

pointing of the CSM by the astronauts resulted in an error of <10 in the

orientation of PFS-1; the PFS-2 spin axis was ~ 5. 50 from normal. The

spin period is 5 sec. Each of the six sides of the satellite forms a solar panel.



The power output of the array is about 24 watts. Averaged over an orbit

about the moon, the power is 14 watts. The power subsystem also in-

cludes a battery pack of 11 silver cadmium cells.

The orbital periods of both subsatellites are 120 minutes to within

a few seconds. The orbital inclination of PFS-1 with respect to the moon's

equator is 280, that of PFS-2 is 100. The sense of revolution about

the moon is clockwise viewed from the north. The geocentric ecliptic

longitude of the moon at the time of the PFS-1 launch was 1550 and 1380

at the time of the PFS-2 launch. The initial aposelene of PFS-1 was

138 km and initial periselene was 100 km. The initial aposelene of PFS-2

was 130 km and initial periselene was 90 km. Perturbations on the orbit

affect the periselene. The inclination of the orbit is not appreciably changed

by the perturbations. The periselene varies both on a short term cycle

( 1 month) and on a longer term basis. The minimum periselene reached

by PFS-'1 was 25 km in July, 1972. Perturbations on the PFS-2 orbit

caused the spacecraft to crash on the back side of the moon on May 29, 1972.

The particles and fields subsatellites were instrumented to make

the following measurements (principal investigators are indicated in paren-

theses): 1) plasma and energetic-particle intensities (K.A. Anderson,

University of California, Berkeley), 2) vector magnetic fields (P. J.

Coleman,. Jr. University of California, Los Angeles), and 3)subsatellite

orbital velocity to high precision in order to determine lunar gravitational

anomalies (W. Sj6gren, Jet Propulsion Laboratory, Pasadena, California).

IL Plasma and Energetic Particle Experiment

The main objectives of the plasma and energetic particle experi-

ment on the subsatellite are to describe the various plasma regimes in
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which the moon moves, ' to determine how the moon interacts with the plasma

and magnetic fields of its environment, and to determine certain features of

the earth's magnetospheric structure and dynamics.

The particle detectors include several electrostatic analyzers and

two solid-state 2lescopes (see Table 1). These instruments cover the

electron kinetic energy range of 530-300, 000 ev in nine intervals and 40 keV

to 2 MeV for protons in six intervals.

A basic scientific requirement placed on the subsatellite was that

it provide particle and field data everywhere in the orbit about the moon.

This requirement demanded a data storage capability. The magnetic-core

memory unit employed provides a capacity of 49, 152 bits. Data can be

read into the memory at a rate of 8 bits/sec, which allows coverage of

nearly the entire orbit (2-hour period). Data can also be read in at

16 bits/sec if a better time resolution in the measurements, at the expense

of covering only about one-half the orbit, is desired. Real-time data at

the rate of 128 bits/sec can also be acquired from the experiments, but

in this mode battery power as well as solar-cell power is being used beyond

a certain point. In normal operation the transmitter is commanded on

after the subsatellite appears from behind the moon. Real-time house-

keeping and scientific data are transmitted for a short time to ensure

that the receiving stations are locked onto the signal, Then the data in

the memory unit are dumped in 512 sec at a rate of 128 bits/sec. The

transmitter is then turned off, and accumulation of data in the memory

unit begins again. A system block diagram of the fields and particles

subsatellite is given in Figure 1.
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IIL Description of Particle Detectors

A. Energetic-particle telescopes

Absolute intensities and energy spectra of electrons and protons in

the range from 20 to about 2000 keV are obtained from two telescopes using

solid-state particle detectors (Figure 2). The telescopes point along the

spin axis. Each celescope contains a 25-mm silicon surface barrier detector

310 pm thick. In terms of particle kinetic energies, this detector has a

thickness that stops electrons below ~ 300 keV and protons below 6 MeV.

2
Behind this detector is a second one of a 50-mm area. The output of the

back detector is placed in anticoincidence with the front detector.

The front detector is a fully depleted surface barrier detector

mounted with the active barrier side away from the collimator. Thus the

aluminum-coated ohmic contact surface is the particle entrance surface.

This orientation minimizes radiation damage effects and light sensitivity

while providing a thin (40 pg/cm2 Al) entrance window. The surface consists

of 40 pg/cm 2 of barrier gold. The rear detector is oriented oppositely

so that the barrier surface of the two detectors directly face one'another.

Electrical contact to the two detectors is made through rings of gold-

plated, copper-clad fibergalss-epoxy board which are stacked immediately

adjacent to and in contact with the detector contact surfaces, which are

also gold-plated, copper-clad epoxy board.

A center contact ring, clad on both sides, is sandwiched between

the detectors and provides isolated bias contacts at ~ 120 Vdc. The outer

contact rings, each clad on one surface only, provide signal contact to both

detectors. Subminiature, coaxially shielded, low-capacitance lead wires

are soldered to taps on the contact rings and run through slots in the tele-

scope housing to the preamplifiers.
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The telescopes are collimated by a set of 11 spaced aluminum wiper

rings which, with the housing edges, provide a carefully aligned series of

knife edges positioned along a 150 half-angle entrance cone. The edge of

the front detector active area also lies on this cone. Since the front detector

is of finite area particles may enter at angles up to approximately 200

maximum. The design of this collimator minimizes the possibility of colli-

mator-scattered particles entering the front detector and substantially

reduces the required mass. All internal collimator surfaces are black-

anodized to reduce illumination of the detector surface by scattered sunlight.

One of the telescopes (the B telescope) has an organic (Parylene N)

foil of a 375- pg/cm)2 thickness ahead of the front solid-state detector.

Parylene N (a proprietary organic from Union Carbide's Plastics Division)

is the trade name for poly-paraxylylene, a completely linear, highly

crystalline material. It has a carbon/hydrogen ratio of unity and a density

-3
of 1. 1 g cm - 3 and can be vapor-deposited to form self-supported pellicles

2 2
of < 50 tg/cm to, >50 mg/cm . This foil, uniform in thickness to 10%,

stops incident protons with energy up to 310 keV but reduces the energy

of a 26 keV electron by only 5 keV. Thus, except for a small energy shift,

a flux of electrons with energies in the 20 to 320 keV range would cause both

telescopes to count at the same rate. However, when protons are incident

on the telescopes, the counting rates will show large differences. In addi-

tion to this means of particle discrimination, we can also make use of the

fact that protons and electrons of the same energy are shadowed by the moon

quite differently.

Detector pulses are analyzed into eight energy channels, whose

nominal thresholds are given in Table 2. The upper two channels are

transmitted only in calibration mode when they are substituted for low-energy
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proton channels 5 and 6. A single PHA is time-stored between the two

telescopes. The electron thresholds are switched when the analyzer is

switched from one telescope to the other, so that the channel edges corre-

spond to the same incident electron energy to compensate for the loss in

the foil (approximately 5 keV at the lowest threshold). The foil and the 320

and 520 keV thresholds are adjusted so that 40 to 340 keV protons detected

by the open telescope (the A telescope) are degraded below the lowest

threshold of the shielded telescope and 340 to 520 keV protons detected by

the open telescope deposit 20-320 keV in the shielded telescope.

When the 340 to 520 keV proton fluxes detected by the telescope

covered by the foil are low, these constraints allow a direct subtraction of

the proton and electron spectra.

Calibration of the telescope system for electrons was performed at

Space Sciences Laboratory at Berkeley using a simple high voltage accele-

rator for energies <100 keV and a magnetic beta-ray spectrometer for

energies from 100 keV to 2 MeV. Proton calibrations were performed on

Van de Graff accelerators at the California Institute of Technology.

A weak radioactive source (plutonium 239) is placed near the front

detector in each telescope. The QC particles from these sources provide

well-defined and known energy losses as a check on detector and electronic

stability.

Two low-energy thresholds selectable by ground command were

provided for the telescope: this feature was included in order to operate

the telescope as near the thermal noise levels as possible. Because of

the somewhat higher temperatures than anticipated, the threshold was

raised during the third week of operation in orbit of PFS-1.
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After October 5, 1971, the A telescope in PFS-1 suffered from

intermittent breakdown due to the high spacecraft temperatures. Count

rates for these periods in channels 1 to 4 are high and unreliable. The

telescope apparently recovered in large measure during December, 1971.

In addition to the A telescope breakdown, short periods of high noise were

occasionally seli in the B telescope. The telescopes aboard PFS-2, due

to thermal redesign of the spacecraft, remained cool and behaved well

throughout their short lifetime.

Telescope signal processing. Each of the two telescopes has its own

analog signal processor. Each telescope consists of two counters, with the

back counter in veto. The analog outputs pass into a stacked-discriminator

pulse height analyzer. The analyzer is switched from one telescope to the

other on spacecraft command. The analyzer levels are also switched to

compensate for energy loss in an absorber in front of telescope B. The

lowest threshold may be raised 5 keV on command.

A functional block diagram of the analog electronics is shown in

Figure 3. Signals from the front detector are amplified by a charge-sensitive

preamplifier followed by two shaping amplifiers. The second shaping

amplifier, called the amplifier offset gate, has a current output with fixed

stable offset. This output is gated by a fast gate.

The output drives a resistor divider which attenuates the signal to a

level suitable to drive the 20 to 500 keV pulse height discriminators. The

high-level discriminators (2 and 4 MeV) are operated directly off the pre-

amplifier.

Potentiometer adjustments are provided to vary the lowest thresholds

and to adjust the higher energy channels to match proton edges. Other adjust-

ment are-provided to allow for energy loss in the absorber foil.
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Electron Straggling. Electrons above 300 keV are still stopped with

some efficiency by the Si detectors due to electron straggling. Additionally,

electron detector efficiency is < 100% even at low energies due to electron

backscatter. Using data from Berger et al. for 300 L.m Si detectors, the

estimated effici ncy of the detectors is plotted as a function of energy in

Figure 4.

Telescope gain shift. Analysis of data obtained during the PFS-1

lifetime indicates that at manytimes the B or shielded telescope was

counting at rates significantly in excess of the A or open telescope. A

partial list of malfunctions which might explain this behavior include:

1. incomplete depletion of the A solid state detector;

2. failure or partial failure of the B telescope anticoincidence;

3. mismatching of one or more of the energy thresholds on either

the A or B telescope;

4. mismatching of the telescope geometry factors;

5. an upward gain shift in the B telescope or a downward gain

shift in the A telescope.

At certain times during the PFS-1 mission, when stable and sub-

stantial electron fluxes occur while the magnetic field is stable in an

appropriate direction and relatively few protons are present, electron

shadowing by the Moon can be used to derive electron spectra separately

for the two telescopes. Analysis of selected electron spectra obtained

in the above manner indicate that the malfunction preserves spectral slope

for a power-law spectrum. Since (4) is considered an unlikely possibility,

only possibility (5) then remains. Noise considerations suggest that the

shift in gain is in the A telescope. Analysis of selected electron spectra
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indicates that the hypothesis of a gain-shift is also consistent with the

differences between electron spectra derived for each of the telescopes

which cannot be fitted by a single power-law over the entire energy range

20 keV to 320 keV. The gain-shift is probably loosely temperature dependent.

The gair shift is apparently stable in magnitude for times on the

order of days but has apparently changed over longer time scales. Due to

the rather special conditions required to make an independent measurement

of the change in gain and due to the necessity for careful manual corrections

for the accumulator conversion error (see the discussion later in the

report and Appendix A), no survey has yet been completed of the quantitative

value of the gain shift as a function of time.

Values for the gain shift of 1. 00, 0. 86, 0. 72, and 0. 43 (all values

+ . 03) have been computed at various times in the mission. A gain-shift

of 0. 72 means that a 100 keV electron as seen in the A telescope has been

treated by the PHA as a 72 keV electron. Table 3 shows energy thresholds

for PFS-1 under the assumption of 0. 72 gain-shift in the A telescope.

Telescope. background considerations. Due to the geometrical

arrangement of the detectors, the telescopes are not completely anti-

coincidenced against high energy cosmic rays and the spacecraft secondary

particles produced by them. There is also a small background count rate

in the low energy channels of the telescopes produced by the calibration

sources. Calculation and ground calibration yield estimated background

contributions from primary cosmic rays and calibration sources in all

channels. Because the effect of spacecraft secondary particles cannot

be included, these calculations are essentially lower limits to the back-

ground. Analysis of the actual fluxes seen under quiet conditions in both

solar wind and magnetotail electron shadows yield upper limits to the true
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background in the low energy channels under quiet conditions. The back-

ground flux calculations and observational upper limits are summarized

in Table 4.

The background fluxes observed for PFS-1 should also be approxi-

mately the same as those of PFS-2. The PFS-2 upper limits in Table 4

are probably high, because they are based upon only one month of data

during which no truly quiet periods occured. It should be noted that the

minimum ionization loss at high energies for silicon detectors of these

thicknesses is - 100 keV. Thus background in channels 1 and 2 is likely

due to spacecraft secondaries.

B. Electrostatic analyzers

The electrostatic analyzer assembly consists of four electro-

static analyzers, analog electronics, high-voltage power supplies, and

logic circuits in the programming and data handling subassembly. Each

electrostatic analyzer consists of two concentric sections of spherical

copper plates. The outer plate in each pair is grounded, while the inner

plate is raised to a positive potential. The sections are mounted in Kel-F

insulator. The plates are shaped to provide a 1800 x. 1900 volume between

them for the electron trajectories. One of the analyzers (A4) is shown in

Figure 5.

The force experienced by an electron entering the analyzer is

directed toward the common center of the pair of plates. If the angle which

the velocity of the incoming electron makes with the normal to the aperture

is small enough and if the energy of the electron lies within an interval

determined by the plate radii and the bias on-the inner plate, then the electron

will traverse the entire 1800 path from the entrance to the exit aperture.



The maximum elevation angle accepted is determined by the radii of the plates.

At the exit aperture is placed an electron detector which consists of

one or several Spiraltron channel multipliers (Bendix model #4210) or funnel-

mouthed Spiraltrons (Bendix #4219), which are connected to preamplifiers

and discriminatc-s. The discriminators are in turn connected to the

spacecraft telemetry through the data handling logic. Thus each pair of

plates operates to measure the electron flux from within a certain solid

angle and energy band, over an area determined by the active area of the

detector.

The operation of the funnel-mouthed Spiraltrons (#34219 is in con-

junction with a plastic scintillator and photomultiplier tube. The 4219's

are mounted in the scintillator, as is the PMT, and the tube output is

logically arranged to veto any coincidence between the PMT and the 4219.

This anticoincidence is needed in order to reduce the cosmic ray background

when measuring anticipated low electron fluxes in channels C4 and C5.

The PMT's are mounted on the scintillator as close as possible to the

funnels, since the events to be vetoed are primarily those in which a

particle passes through the 4219 near the funnel.

Analyzers Al and A2 (detectors Cl and C2) are geometrically

identical and employ a single channeltron (channel electron multiplier),

without funnel, to detect intense fluxes of low-energy elect rons. They differ

only in the plate voltage and hence in the mean detected energy. Detectors

C3 and C4 use the same set of plates (analyzer A3), but the output of C4 is

derived from two 1 cm diameter funnel-mouthed channeltrons in parallel.

The output of C3 is derived from one channeltron without funnel. This

arrangement permits a wider dynamic range. The funnel mouthed channel-

trons are surrounded by an anticoincidence plastic scintillator to eliminate



background from penetrating cosmic rays.

Detectors C3 and C4 are mounted with an electrostatic shield

between them so as to minimize electronic cross-talk. Analyzer A4

(detector C5) contains five funnel-mouthed multipliers in parallel to

detect low rates .t high energies. These five multipliers are also surrounded

by a plastic anticoincidence shield. The plate radii and positive bias

on the inner plate are listed in Table 5 for the various analyzers. Also

included in Table 5 are FWHM energy intervals, geometrical factors

G, channeltron efficiencies 8, and flux factors 1/G8. for each of the

detectors. The analyzer energy responses and geometrical factors

were determined by a coordination of theoretical calculation and experi-

mental calibration in an electron beam.

The electrostatic analyzers are oriented perpendicular to the spin

axis. To avoid spin biasing of the data due to directional anisotropy of

particle flux, data are accumulated for integral spin periods only in the

telemetry-store mode.

In addition, the output of the C5 detector is time division multiplexed

such that particle intensities from various sectors of satellite rotation can

be obtained. The sectoring is made with respect to the transverse magnetic

field direction as sensed by the tranverse magnetometer. For a given

field direction in the plane perpendicular to the spin axis, sector 1 observes

particles with 0 to 450 pitch angle particles, sector 3 observes 90 to 1350

pitch angle particles and sector 4 observes 135 to 18 0 0pitch angle particles.

The precision to which each sector edge is determined is + 50. This

technique of sectoring off the magnetometer output permits direct measure-

ments of particle pitch angle distributions and avoids costly and time-

consuming merging of magnetometer and particle data at a much later date.
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The absolute direction of the magnetic field in space is determined from a

sun pulse. When the spacecraft is in the moon's shadow, the sun pulse is

not available, and knowledge of the absolute direction of the magnetic field

depends on a precise knowledge of the spin period. However, at all times

the particle dat: from C5 are being organized by the magnetic field.

In the high bit rate or real-time mode, the automatic C5 sector-

ing is disabled and C5 data is stored at 0. 5 second intervals. Cl, C2,

C3, and C4 data are also stored at intervals less than one spin period

in real-time mode.

An important design requirement is the rejection of ultraviolet

light. This requirement is met in a number of ways. First, a 1800

analyzer transmits a photon only after several reflections. The prob-

ability of this occurrence is minimized by serration and gold-blacking

of the inner surface of the outer plate. The serration promotes photon

absorption. Furthermore, for the cases of Al and A2, only a small

aperture is made in a piece of grounded metal at the opening to permit

the electrons to enter, thus reducing the amount of light that can get in.

The combined procedure reduces the incoming photon flux by a factor

of > 1012. The whole assembly must be mounted so that no light can

enter except through the entrance aperture. Figure 6 illustrates the

serration design.

Despite these precautions, a low level solar UV contamination

(, 5 cts/[cm2 ster sec kevV]) is present in the C5 output of PFS-1 when

the sub'satellite is in sunlight. 'Further, the C3 channeltron on PFS-1

malfunctioned shortly after launch and is not useable. Electronic noise

from C3 probably contaminated the C4 output at very low count rates

with some time and temperature dependence in the resulting background

levels.
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Analyzer construction. The Kel-F housing is the primary structure

holding the inner and outer hemisphere plates and the multiplier module in

position to receive the particles. The Kel-F is designed and machined to

position the hemispherical plates precisely while acting as the termination

for the electrostatic field along the 900 sector of the analyzer.

The two concentric hemispheres which are the electrostatic plates

of the analyzer are spun from 0. 042- inch thick copper sheet. The inner

surface of the outer hemisphere is serrated as shown in Figure 6 so that

any light entering the analyzer will be reflected back out or absorbed into

the gold-blacked finish. The flats of the sawtooth-type serrations are

normal to the radius of the sphere through the center of the analyzer. The

inner plate (hemisphere) has a cone-shaped brace soft-soldered to the

inner surface to provide a mounting point and the electrical connection. The

outer plate is then assembled with the flats of the serrations toward the

particle entrance aperture. The outer plate is held in place with four

screws and is sealed all around the edges with epoxy to prevent light

leakage into the analyzer chamber.

The Spiraltrons and PMT assemblies consist of the Spiraltron module

and the PMT module. The Spiraltrons are mounted in plastic scintillator

NE102. The scintillator is polished to maximize reflections at the surface

and thus maximize the light collection efficiency at the photo-multiplier.

The PMT module is bolted to the Sprialtron module using an 0-ring inter-

face to prevent any light leakage. The assembly is then bolted to the

Kel-F housing. An 0-ring is also used at this interface to maintain light-

tightness.

Analyzer signal electronics. The analyzer signal electronics

consists of a charge-sensitive amplifier and a pulse height discriminator.
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Coincidence operations are performed in the logic unit. The CCEM

amplifier-discriminator system features very wide dynamic range and

fixed-deadtime operation. A wide dynamic range is necessary to prevent

counting losses caused by reduced CCEM pulse heights at high counting rates.

The same amplifier-discriminator is used for the veto phototube.

A simplified schematic of the amplifier-discriminator circuit is

shown in Figure 7. The preamplifier may be either DC or AC coupled to

the multiplier. AC coupling components are located in the high voltage

structure at the multiplier. Cable capacitance is nullified by the feedback loop.

In the saturated mode, a spiral CCEM has a gain of about 4 x 108

so that a single event produces an output charge of 6 x 10-11C, or about

600 times the threshold signal. This signal causes the overload loop to

operate and recover the amplifier in a fraction of a microsecond. A second

pulse following within a microsecond will be detected even though the CCEM

has recovered only a small fraction of its gain. This system allows accurate

counting with CCEM's at very high rates, in excess of 100 kHz.

The same amplifier-discriminator is used to detect veto events in

the plastic scintillator. The low threshold sensitivity enables the photo-

multiplier to be run at relatively low gain. A signal charge of about 50

photoelectrons is expected, corresponding to a photocathode input of about

8 x 10 1 8 C. For a signal-to-threshold ratio of 10, the photomultiplier gain

need be only about 1. 25 x 105. A substantial margin is thus available.

Overload signals from protons stopping in the scintillator may

correspond to energy inputs as large as 100 MeV. This input is about 600

times the threshold, a dynamic range easily accommodated by the overload

circuit. Hence, vetoes will not be missed as a result of ove rloads.
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The fixed deadtime, nominally 6 ps for the CCEM discriminators, is

used to keep the spacecraft MOSFET accumulators from missing pulses. The

leading edge of the discriminator pulse starts a digital oneshot whose output

triggers the accumulator. The deadtime of the phototube discriminator is set

at 3 u s. After a 3 + 5 ps. After a 3 + 5 ps delay from the leading edge of

aCCEM discriminator pulse, the logic transmits an output pulse if a veto was

not sensed during the delay interval. This timing insures that the spacecraft

accumulators have sufficient time to recover between pulses.

C. Accumulator Conversion Error (ACE)

The subsatellite utilizes a compressed 8-bit floating point format in

storage and transmission of the 19-bit count accumulators for the analyzers

and telescopes. An engineering ove rsight in the design of the logic of the

conversion from the 19 to 8 bit format caused readings of 16-31 counts per

accumulator period to be transmitted as 0-15 counts per accumulation period

on PFS-I. That is, for any single data point representing a true number of

counts N T in a given data channel during its accumulation period, a data

point NA was received on the ground according to the function fl(NT)

T for 0N T!15

N A= fl(NT) NT -16 16 NT T 31

NT 32 < NT

The function fl is graphed in Figure 8. Every data point, taken by itself,

which lies in the range 0 to 15 inclusive is thus ambiguous by an additive

factor of 16. The design problem was corrected on PFS-2. Computer

procedures were constructed to attempt to correct this error by statistical

analysis of the count rate distribution. A detailed description of these

procedures is given in Appendix A.
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Examination of test data simulating the ACE and of actual data

indicates that, as expected, the correction procedures were not effective

during periods of rapid time variations. Data points which were increased

by 16 counts by the correction procedure are indicated on the plots by tick

marks at the top f the graphs. The plot format will be discussed in more

detail in a later section.

D. Time Correction Procedure

Memory store data taken after the second telemetry logic failure

(data after March 1, 1972) on PFS-I has no direct timing available with it.

The only time information available is the time of receipt on the ground of

the data and the known time properties of auto-cycle mode operations. As

discussed in Appendix B, it is possible to correct the timing to a high degree

of accuracy with this information, however, and the data has been so corrected.
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IV. Outline of Experiment History

A. PFS-1

Launch August 4, 1971 2030 UT

Analyzers turned on August 5, 1971 2000 UT

PHA thr, shold raised from LO to HI August 19, 1971 2050 UT

Intermittant breakdown of A telescope ~October 6, 1971
begins

First telemetry failure February 4, 1972

Second telemetry failure February 26, 1972

Termination of ground support January 22, 1973

Calibrations longer than 1 minute
were run: November 10, 1971 1520-1525 U

January 20, 1972 1420- 1450 UT

January 31, 1972 1731-1733 UT

B. PFS-2

Launch April 24, 1972

Telescopes turned on April 25, 1.972 1825 UT

Analyzers turned on April 27, 1972 0200 UT

Impact on backside of moon May 29, 1972 2200 UT

Calibrations longer than 1 minute
were run: April 30, 1972 0608-0611 UT

May 10, 1972 1857-1859 UT

May 12, 1972 1525-1950 UT

May 23, 1972 0422-0456 UT
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V. Description of Materials Sent to NSSDC

A. Orbit Average Tapes

Three tapes are to be sent, each tape of one file and with one

record/orbit assigned:

1st tape PFS-1 REVS 1-2195

2nd tape PFS-1 REVS 2195-6459

3rd tape PFS-2 REVS 1-424

Each record is 276 60-bit words along, with each word a CDC 6600

binary word.

The format of the records is as follows:

Word Parameter Mode

1 orbit no. integer

2 orbit date CDC display code

3 fractional day (this and all subsequent words

of start are real)

4 active time of Cl

for entire orbit

5-16 active time of CI

for 12 successive

10 minute averages

from orbit start

17-276 13 x 20 array stored

by columns
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The first row of the array consists of orbit averages for each

detector channel; each of the next 12 rows is a 10 minute average. Columns

are in order SA 1-4, SB 1-4, SA2...SA6, SB6, SEC1,

SEC2, SEC4, SEC3, SUMC5, C4, Cl, C2

1. Miss ng orbits have the rev number defined, but the

fractional day = -0 (all 60 bits on)

2. The orbit date is in form MM/DD/YY

3. Missing averages or active times are represented by a -0.

B. Orbital Summaries

The processing program produces ten plots on microfilm for each

orbit of the subsatellite about the moon. A sample plot is shown in Figure 9.

Particle flux in units of cts/(cm2sec ster keV) is plotted vertically on a

logarithmic scale of 6 decades from 10-1 to 10 . Time is plotted horizontally

starting at the closest approach of the subsatellite to the subsolar point on

the moon. Universal time in the form HR. MIN. SEC is labelled every

30 minutes. The date is marked at the bottom .of each plot in the form

MONTH/DAY/YEAR and the day number of the year is indicated in the upper

right hand corner (DAY 1 = Jan 1). The orbit number is given in the upper

left hand corner and the subsatellite number in the lower left corner. Two

traces are plotted within each grid, with one of the traces marked with

periodic asterisks (*:). The traces are labelled at the top of each grid

(note that labels SA1 and SB1 should be SA1-4 and SB1-4) along with a

scale factor required to convert from fluxes as plotted to true flux, i. e.,

true flux = plotted flux ~ scale factor. Table 6 contains a list of the traces

in order by plot and the scale factors. Two asterisk symbols are plotted

along the top of each grid indicating from left to right respectively sunset



and sunrise. The plot symbols (- and *) also appear at the upper right

corner. Small vertical bars appearing horizontally across from these

symbols indicate the times (if any) at which ACE corrections have been

made in each of the two traces. The plot symbols also appear further

down along the ght margin of the grid to indicate the flux level of the

orbit averages of the given traces. It should be noted that although an

editing procedure has been used to delete points with bit errors, not all

such points have been deleted and these points may cause spuriously high

fluxes to appear in 10 minute or orbit averages.

The data accumulation periods for the various channels (real-

time [RTI, telemetry-store fast [TSF], telemetry-store normal [TSN])

in the three data modes are summarized in Table 7. The points plotted

are either averages over 2 spin periods (-10. 1 seconds) or single data

points, with the averages used where the data point intervals are smaller

than 10 seconds. The telescope data is not continuous because the tele-

metry switches between the A and B telescopes; e.g., in TSN mode, the

output is 48 seconds from the A telescope, then 48 seconds from the B

telescope, then 48 seconds from the A telescope, etc. Data gaps are

plotted as straight lines between adjacent data points. No explicit indication

on the plots exists of the data mode. RT data can generally be distinguished

on the plots by the much finer appearance of the time resolution in the upper

channels of the telescopes. The point is significant because the automatic

C5 sectoring is disabled in the RT mode and the separate sectors as plotted

are not significant.



Daily and 10 day plots. The daily and 10 day plots are generally

similar in format to the orbital summary plots. 10 minute averages are

plotted on the daily plots, orbit averages (2 hours) on the 10 day plots.

Samples of each are shown in Fugures 10 and 11. Associated with each

plot in addition . the regular plot symbols are plotted diamonds (0) and

squares (0) which indicate the start time of each orbit and the average flux

in the given detector over the orbit. On the 10 day plots the time labels are

in the format DAY/HR. The lunation number is labelled to the right of the

grid. Plots with lunation numbers ending in . 00 start at the subsolar point of

the moon on its orbit about the earth, plots with numbers ending in . 33 or . 67

start 1/3 or 2/3 around the orbit. Lunations with .33 generally contain the

geomagnetic tail data. The 10 day plots are interspersed on the film with

daily plots.

VL Major Computer Processing Programs

The following is a brief description of the major computer programs

used to process Apollo Subsatellite data. Several of the brief discussions in

this section are supplemented by other Appendixes describing in more detail

the algorithms used in the calculations. All programs have been modified to

compile on the RUN76 compiler and run on the CDC 7600 at the Lawrence

Berkeley Laboratory.

1. PRNT

The PRNT program dumps in a readable. and decoded format the

raw counts and engineering paramete rs from the JSC data tapes.

2. DIST

DIST, a modified version of PRNT, is a special purpose program to

print count averages and count distributions as an aid to detailed manual

correction of the ACE (where such manual correction is necessary).
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3. MAGDP

Two versions of the program MAGDP have been used, the later

version in conjunction with the program BRWTE. The first ver-

sion of MAGDP was again a modified version of PRNT, this

modifica'ion producing a readable and decoded dump of magneto-

meter data from the JSC tapes. The current version of MAGDP

produces a dump of tapes produced at Berkeley by the program

BRWTE from despun and averaged subsatellite magnetometer data

tapes supplied by the UCLA group. MAGDP is also capable of

making plots of magnetic field energy densities as a function of

true and merging ephemeris tape data with the magnetometer

data to indicate intersection of the field line on which the Sub-

satellite lies with the earth's bow shock.

4. EPHM

EPHM produces dumps of the JSC ephemeris tapes. It can also

produce card outputs or orbit start times for input to oth er pro-

grams and can make plots of the subsatellite track in GSM or NS

coordinates as the moon traverses the geomagnetic tail.

5. PFSPLOT

PFSPLOT is the main production program which produces, from the

JSC experimenter tapes, orbit summary plots of flux in all the detector

channels in all data modes and output tapes containing 10 minute and

2 hour averages. PFSPLOT includes subroutines for attempted

correction of the accumulator conversion error (ACE) and for editing

of bit errors on the tapes. Two versions of the program now exist:

a large version (PFS-LARGE) for PFS-2 data and PFS-1 data from

August, 1971 to March, 1972 and a smaller ve rsion (PFS-SMALL)

for data taken after the telemetry failure on PFS-1.
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6. AVMRG

AVMRG merges the tapes output from the separate runs of the

PFSPLOT program onto the tapes which will be supplied to the

NSSDC. These merged tapes are also used as input for the

program ORBAV and SPEC.

7. ORBAV

ORBAV produces the 1-day and 10-day summary plots from tapes

output by AVMRG.

8. IMPAC

IMPAC is a program for making printed listings. and/or plots of

subsatellite impact paramete rs. These impact parameters are

essentially theoretical estimates for each orbit of electron and

proton shadowing by the moon based on merged UCLA magneto-

meter data and JSC ephemeris data. The impact parameter defi-

nitions and plot formats are described in detail in Appendix C.

9. SPEC

SPEC is the basic program for calculating and plotting proton

and electron spectra from the subsatellite detectors. Two ver-

sions exist: (1) the original SPEC which accepts either card

input of the fluxes or the AVMRG produced tapes of 10 minute

and orbit averages, and (2) SPEC2 which reads data from the

JSC.experimenter tapes. The detailed procedures used in cal-

culating telescope spectra are discussed in Appendix D.

10. PITCH

PITCH is a program for computing and plotting directional flux

distributions from real-time analyzer data and the UCLA
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magnetic field data. It can be used not only to derive inteplanetary

flux distributions but also to look for remanent lunar surface

magnetic field mirroring on the front side of the moon in the high

latitude magnetotail. A detailed discussion of the methods and

data parpmeters used in the program is contained in Appendix E.

11. TPFIX

TPFIX is a program which corrects the'timing of PFS-1 MRO

data taken after March 1, 1972, using the procedures of

Appendix B in this report. TPFIX generates a new tape in the

JSC format with timing and mode indicators reset. Con-

siderable manual plotting and calculation were required to set

up the data cards which controled TPFIX, however.

12. PRAN

PRAN is a program used in the early analysis of lunar remanent

magnetic field mirroring. PRAN calculates C5 sector ratios and

satellite positons using the JSC experimenter and JSC ephemeris

tapes.

13. MAGMAP

This program combines magnetic field, electron, and orbital data

to produce a map of regions of electron scattering on the lunar

surface average over many orbits. For each electron measure-

ment, the simultaneously measured magnetic field direction is

projected to the surface and the presence or absence of scattered

electrons from this surface location is noted. The program also

produces listing. MAGMAP is discussed in more detail in Appen-

dix F.
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TABLE 1. Summary of Detector Characteristics

Energy Range

*Geometric Angular Angle to Minimum Detectable
)esignation Type Protons, Mev Electrons, key Factor Aperture Spin Axis, deg Flux, cm-2sec-1 ster-1

SA 1-6 Open solid-state 0.04-2.0 20-300 0.04~cm2ster 400 cone 0 "U0.01
detector with

anticoincidence

detector in back.
(Six-channel pulse
height analyzer.)

SB 1-6 Same type as 0.34-2.0 20-300 0.04cm2ster 400 cone 0 "'0.01
SA 1-6 except with
375-Ug/cm2 foil
over detector.

Cl Channel electron No response 0.52-0.58 5.6 X 10- 5  200 by 600 90 ,104
multiplier in cm2ster key FWHM
hemispherical plate
analyzer.

C2 Channel electron No response 1.87-2.08 1.9 X 10- 4  200 by 600 90 104
multiplier in cm2ster key
hemispherical plate
electrostatic ana-
lyzer.

C3 Channel electron No response 5.9-6.4 2.4 X 10-4  150 by 600 90 -104
multiplier in cm2ster key
hemispherical plate
electrostatic ana-
lyzer.

C4 Funnel-mouthed No response 5.8-6.5 0.046 cm2ster i80 by 60 90 0.1
channel electron key
multiplier hemi-
spherical plate
electrostatic ana-
lyzer.

C5 Funnel-mouthed No response 13.6-14.8 0.071 cm2ster 130 by 600 90 0.1
channel electron key
multiplier in
hemispherical plate.
electrostatic ana-
lyzer.

* Geometric factors for Cl-C5 include ehanneltron efficiences
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TABLE 2. Nominal Telescope Energy Channels (in keV)

Apollo 15 Subsatellite (PFS-1)

A Telescope B Telescope
Channel

Electrons Protons Electrons Protons

1-4 LO 18.4-331.5 32-343 18.4-331.5 342-538

HI .21.4-331.5 36-343 21.4-331.5 345-538

2 40.2-83.3 56-99 40.2-83.3 356-377

3 83.3-153.4 99-167 83.3-153.4 377-416

4 153.4-331.5 167-343 153.4-331.5 416-538

5 331;5-528 343-537 331.5-528 538-696

6 528-2000 537-2000 528-2000 696-2000

7* ---- 2000-4000 ---- 2000-4000

8* ---- >4000 ---- >4000

Apollo 16 Subsatellite (PFS-2)

A Telescope B Telescope
Channel

Electrons Protons Electrons Protons

1-4 LO 22.5-322 39-334 22.5-322 333-519

HI 25.7-322 42-334 25.7-322 335-519

2 43.6-86.5 62-105 43.6-86.5 344-367

3 86.5-157 105-171 86.5-157 367-406

4 157-322 171-334 157-322 406-519

5 322-508 334-518 322-508 519-670

6 508-2000 518-2000 508-2000 670-2000

7* --- 2000-4000 --- 2000-4000

8* --- >4000 --- '4000

* Channels 7 and 8 are transmitted only when in calibration 
mode, when

their output is substituted for channels 5 and 6 in the data format.
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TABLE 3. PFS-1 Telescope Energy Channels with 0.72 A Telescope Gain Shift (in keV).

Channel A Teltscope B Telescope

Electrons Protons Electrons Protons

1-4 LO 25.6-460 39-472 18.4-331.5 342-538

HI 29.7-460 42-472 21.4-331.5 345-538

2 56-116 72-132 40.2-83.3 356-377

3 116-213 132-227 83.3-153.4 377-416

4 213-460 227-472 153.4-331.5 416-538

5 460-735 472-744 331.5-528 538-696

6 735-2800 744-2800 528-200 696-2000



TABLE 4. Telescope Background Fluxes* [in (cm2-ster-sec-keV)-1 ]

Upper Limits to
Calculated Telescope Background Due to Penetrating Cosmic Rays Calibration Source Background Quiet Time Background _

PFS-l PFS-2 PFS-1 PFS-2 PFS-1 PFS-2

With Nominal With 0.72 A
Channel Energy Thresholds Telescope Gain

SAI-4 1.7 x 10 2.3 x 10- 3  1.6 x 10- 3  2 x 10 2 x 10- ---

SA2 0.0 0.0 0.0 " "----

SA3 0.0 3.5 x 10- 3  0.0 " "

SA4 3.1 x 10-3 3.6 x 10- 3  3.0 x 10- 3  " "----

SA5 2.8 x 10-3  1.3 x 10- 3  3.0 x 10- 3  " "

SA6 3.4 x 10-4  1.7 x 10 4  3.6 x 10- 4  " "

SB1-4 2.1 x 10- 3  2.0 x 10- 3  " " 1.7 x 10-2  3.6 x

SB2 0.0 SAME 0.0 " 2.0 x 10- 2  5.2 x 10-2

SB3 0.0 AS 0.0 " 1.7 x 10- 2  3.1 x 10- 2

SB4 3.8 x 107 3  ON 3.8 x 10- 3  1.0 x 10- 2 1.8 x 10- 2

SB5 2.6 x 10 - 3  LEFT 2.7 x10- 3

SB6 3.0 x 10 4  3.0 x 10 -  j
* Normalized to channel widths in electron energy

OO



TABLE 5

Analyzer Specifications

Bias Plate Energy Interval Geometrical Factor Channeltron Flux Factor -1

alyzer Volts Radii (cm) Detector FWHM (keV) G (cm 2 -ster-keV) Efficiency 1/GE (cm -ster-keV)

Al 300 2.25 inner C1 .521 - .584 5.27 x 10- 5  1.0 1. 9 x 104

2. 75 outer #4210

A2 1000 2.25 inner C2 1.87 - 2.08 2. 13 x 10 - 4  0. 9 5.2 x 103

2. 75 outer #4210(2)

A3 3000 . 4. 5 inner C3 5.90- 6.38 2. 38 x 10-4  0.55 7. 64 x 103

5. 5 outer #4210

C4 5.85 - 6.48 0. 083 0.'55 21.8

#4219 (2)

A4 5000 4. 625 inner C5 13.6 - 14.8 0. 172 0.41 14. 1

5. 5 outer #4219 (5)

a
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TABLE 6. Traces and Scale Factors by Plot Number

Plot No. Symbol Detector Scale Factor

1--- SECT1 10-1

* SECT2 10 + 1

2 --- SECT4 0-1

SECT3 10+1

3 --- SUMC5 10-'

C4 10-'

4 Cl 10 - 4

* C2 10 - 3

5 --- SAl-4 10+2

* SB1-4 10+1

6 --- SA2 10+2

* SB2 10+1

7 SA3 10+ 3 .

* SB3 10+2

8--- SA4 10 + 3

SB4 10+2

9 --- SA5 10+ 3

SB5 10+2

10 --- SA6 10+ 4

SB6 10+3
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TABLE 7. Accumulation Periods

At
Detector

TSN TSF RT

Cl 2 spins * 1 spins * 1.0 sec

C2 4 " * 2 " * 2.0 "

C4 4 " * 2 * 2.0

C5-SECT1,2,3,4 " * " * 0.5 "

SAl-4, SB1-4 4.0 sec 2.0 sec 0.5, 0.25 sec+

SA2, SB2 24.0 " 12.0 " 2.0 "

SA3, SB3 48.0 " 24.0 " 4.0 "

SA4, SB4 48.0 " 24.0 " 4.0 "

SA5, SB5 48.0 " 24.0 '  4.0 "

SA6, SB6 48.0 " 24.0 " 4.0 "

Spin period 5.06 sec for PFS-

Spin period - 5.06 sec for PFS-1

Spin period = 5.12 sec for PFS-2

+ Data readouts for SAI-4, SBl-4 in RT mode alternate between
0.25 sec and 0.5 sec accumulation periods.



TABLE 8. Phase 2 Correction Logic

If N(4) > 32 set N (J) = N(4)

" AVG < 6.0 and; if N(4) > 16 set N (J) = N(4) -16

" 6.0 < AVG < 8.1 ": if N(4) = 0 set N (J) N(4) +16; " 17 "

" 8.1 " 9.8 ": if N(4) < 1 " " 18 "

" 9.8 " 10.7 ": " 2 " 19 "

" 10.7 " 11.6 ": " 3 " " 20 "

" 11.6 " 1 2 .6 ": " 4 " " 21 "

" 12.6 " 13.6 : " 5 " ; " 22 "

" 13.6 " 14.7 ": " 6 " " 23 "

" 14.7 " 15.8 ": " 7 " " 24 "

" 15.8 " 16.8 ": " 8 " " 25 "

" 16.8 " 17.9 ": " 9 " " 26

" 17.9 " 10.9 ": " 10 " " 27 "

" 18.9 " 19.9 ": " 11 " . " 28 "

" 19.9 " 21.0 ": " 12 " " 29 "

" 21.0 " 22.0 ": " 13 " ; " 30 "

" 22.0 " 23.0 ": " 14 " if N(4) = 31 "

" 23.0 < AVG and: " 15

Otherwise set N (J) = N(4)
-- 1*'



53.

TABLE 9

Cosmic Ray and Spacecraft Secondary Background

Fluxes Used in the Program SPEC

PFS-1 A Telescope Without Gain-Shift, PFS-1 B Telescope, PFS-2

A and B Teles-opes

Channel Background (ct [cm 2-sec-ster-keV])

1.- 4 1. 4x 10- 2

2 1.8 x 10-2

3 1.5 x 10-2

4 8.5 x 10- 3

5 2.6 x 10- 3

6 3.0x 10-4

PFS-I A Telescope with 0. 72 Gain-Shift

Channel Background (ct [cm2-sec-ster-keV])

1 -4 8.4 x 10-3

2 1. 6x 10-2

3 .0 x 10 2

4 3. 6x10-3

33
5 .3 x 10 3

6 1.7 x 10-4
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Analyzer Orientations and Magnetometer Timing

S = (t - T) x 360 0 /T + cp

T m = t + t + (4 + X) x T -22. 281 secondsm d s

0 = is the angle at time of the given detector from either the

sun direction (take td = sun delay time tsd) or the magnetic

field direction (take t d = magnetometer delay time td)d md

T = Subsatellite spin period = ~5. 062 for PFS-1

= ~5. 125 for PFS-2

t m  = frame time on UCLA magnetometer tape closest to t

(tm , tsd and T s are all available on the UCLA tapes)

X = angular offset factor = .0 for sun orientation

0. 372 for magnetic field orientation

ep = angular offset dependent on the detector (see below)

Start End

Detector Accumulation Accumulation cp

C1l tf - 0. 5 sec t + 0.5 sec -150

tf + 0. 5 tf + 1. 5

C2 tf - 1.125 tf + 0.875 1359

*C4 tf - 0. 125 tf + 1.875 900

C5 I tf - 0.25 tf + 0.25 -900

II tf + 0.25 tf + 0. 75

III tf + 0.75 tf + 1.25

IV tf + 1.25 t + 1.75

t = frame time on the JSC tape

*Data analysis indicates these accumulation times for C4 (taken from JSC

a'nd TRW documentation) are incorrect, but no accurate corrected accumu-

itinon firmps hav. vet been derived.
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TABLE 11

Plot Symbols Used by MAGMAP

For total observations in a bin <SYMLM, an integer number is

plotted = ratio of scattered to incident flux times 10.

For total observations in a bin >SYMLM,

- ratio scattered to incident flux 0. 0 to 0. 2

+ 0.2 to 0.4

0. 4 to 0. 6

, 0.6 to 0.8

$ 0.8 to 1.0
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APPENDIX A

Detailed Procedures For Correcting the Accumulator Conversion

Error (ACE)

To "correct" the data for the ACE, we must determine for ewch

data point NA which is in the range 0 to 15 if it corresponds to an

N T =N A or an N T 
= NA + 16. Since every data point in this range is

ambiguous taken singly, the only manner by which the further informa-

tion needed to make the choice of NT can be derived is by examination

of the data points which surround the point in question, either in time

(sequential points from the data channel at the same bit rate) or in

some other fashion (e. g., simultaneous points from data channels

covering adjacent energy ranges). The latter approach is difficult to

develop as an automated procedure without making a priori assumptions

about the relation between count rates in the various channels. The

former approach is tractable, if we make the necessary but drastic

assumption that the true particle count rates change only slowly as a

function of time.'

If. the cotint rates are sufficiently stable, the distribution of the

N would be expected to be a Poisson distribution, with probability

g(NT ) of obtaining N counts in an accumulation period given by

S T -NT

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR
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NT is the average of the N T . The top row of Figure 12 illustrates

some sample calculated Poisson distributions for relevant N , while

the bottom row shows the distributions of apparent counts NA produced

by the .ACE. Note that for given N T , where g(N ) is appreciable,

g(N T + 16) is typically small. Therefore, given N T , we can construct

with substantial certainty the mapping NA  NT and thus correct the

individual points in the sequence. The distributions of NA defined by

NT yield an apparent average NA according to a function

= f (N)NA 2 T

The function f 2 is graphed in Figure 13 Note that for NA 4 6. 5 or

A ~ 9. 5, the function f2-1(NA) NT can be uniquely defined and thus

the critical mapping of NA back to N T can be defined. For N T between

-- -1
6. 5 and 24. 0 (N between 6. 5 and 9. 5), the relation f2 - 1 is triple-

valued and the distribution of the NA themselves must be examined to
A,

determine the branch of f2 ' involved (i. e., NT e [ 6. 5, 11. 5], [11. 5, 19. 0],

or [19. 0, 24. 0]

In broad terms, the recognition tests to distinguish the branches

will consist of noting the presence or absence in the distribution of

NA > 32 and determining the presence or absence of points in ranges of

N where one or the other of the branches has a maximum or minimum.
A

The specific structure of the tests and their interpretation depend on

N and on the number of data points used to determine the distribution.
AIf my pointare taken and N T is in fact const

If many points are taken and N is in fact constant, recognitions canT
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be made highly reliable and the problem is solved. However, the

more points that are taken to form distributions from the actual data,

the more likely that variations of N T with time will occur and the entire

process will break down. The correction procedures were therefore

constructed to use a minimum number of points consistent however with

a reasonably high probability of success in identifying branches of f2-1

Calculations and a series of tests on sequences of points simulating

Poisson distributions indicated that a total of seven points, three points

on either side of a given point in question, is optimal in determining

NA and the distributions. With a seven point procediire, NA is determined

for NT  27 to an accuracy + a of better than 2. 0. This kind of accuracy

is consistent with defining NA< 5.1 and N A > 12.5 as the regimes of

well defined f2- 1 , and dividing the range of N A where distributions

must be tested into the three test ranges:

1, NA E (5. 7, 7. 3) or N T  e (5. 1, 7. 3), (16. 1,21. 7)

2. N A e (7. 3, 8. 9) or NT e (7. 3, 9. 3), (14. 7, 16. 1), (21. 7, 23. 5)

3. A e (9. 3, 12. 5) or NT (9. 3, 14. 7), (23. 5, 26. 0)

The process of recognition in the final form adopted is summarized

in the form of a flow diagram in Figure 14. Included in this diagram

are the specific tests applied.

Two problems have not been dealt with in the TCE correction

scheme as outlined to this point: (1) isolated, statistically unlikely

points will confuse the correction logic for adjacent points; (2) fast

REPRODUCIBLITY OF TIHE
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time variations will confuse the correction logic. To minimize to at

least some extent the effects of these two problems, certain additional

tests have been built into the correction logic. Values of NA  64

will inhibit corrections on adjacent points since NT < 32 will occur next

to NT k 64 statistically only if a time variation in N, has occurred.

If NT has varied substantially, then too little information is available

to attempt a correction. Also, differences between adjacent points on

either side of the point in question may be combined to form a coefficient

2 2 3 2
(N [1 - NA ) (NA[I] -NA I - 1])

2 I= I 5(a)( MIN 2

which may then be compared to a theoretical standard deviation a = N A

If

a' 1.39a

and the distribution recognition indicates that a correction up should be

made on the point in question, the upward correction is inhibited on the

rationale that a' is compatable with a low branch distribution of points

on at least one side of the point in question. Thus sharp changes in

count rate from say the low to the high branch of f 1 or vice-versa

should not confuse the logic. Assuming constant NT and assuming that

the previous steps in the correction have accomplished at least an

approximately correct mapping of NA into N T a second pass is also

made through the array of data points recorrecting individual points

on the basis of their seven point averages. This logic is summarized

in Table 8 under the subroutine name of PHASE 2. All the previous
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logic is contained in the subroutine titled PHASE 1. The entire cor-

rection logic is summarized in Figure 15 with re'erence to both Figure

14 and. Table 8.

Several additional notes should be made on the application of

the correction routines to actual satellite data. Three points at the

beginning and three points at the end of any given sequence of data points

were not corrected. Data gaps of longer than 14 data points in the sum

channel of the solid state telescopes or 10 data points in all other data

channels caused the correction procedure to stop and restart on the next

stretch of data longer than 7 data points. Changes of data mode obviously

were defined as a restart condition. For sectored data, data points

from each sector were corrected separately as were the data points

alternating between two accumulation times in the real-time sum-channel.

telescope data. The low count rates in the sectored C5.data in TSF and

TSN data modes and the variability of these count rates forced use of a

modified minimum correction procedure on this data (only PHIASE 1

through the test AVG > 12. 5 in Figure 14.
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APPENDIX B

Time Correction Procedure

One cycle of auto-mode data consists of 256 seconds of standby,

192 seconds of real time (RT) data at 2 second/frame, 512 seconds of

memory read out (MRO) at 2 seconds/frame, and 6144 seconds of tele-

metry store operation at 24 seconds/frame. Timing of the RT data can

be directly derived from ground time to within 1 second, In principle,

the MRO data can also be timed from ground time if any of the following

are known: (1) the precise time'at which auto-cycle was initiated, (2) the

precise start of the RT data stream, (3) the precise start of the MRO,

(4) the precise end of the MRO. Time (1) is available fairly accurately

from the command history log, but it has been preferred not to place

too great reliance on the precise times of the log entries. Also, any

small departure in the auto cycle period from its nominal 7104 seconds

will cause large cumulative errors in MRO timing for orbits sufficiently

long after the auto-cycle initiation. Time (2) cannot be obtained unless

a ground station is locked up on the subsatellite at the very beginning

of its transmission, which is not generally the case. Time (3) can be

determined only from examination of the particle data to see the jump in

particle counts/accumulation period at the change from RT to TSN data

and is probably not dependably derivable. Time (4), however, is likely

to.be a fairly accurate time, coming as it does after approximately 111

minutes of subsatellite transmission in which good ground station lockup

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR



71.

should have been generally obtained, and which can be easily identified,

coming as it does generally before an apparent 1. 8 hour gap in: the data

stream. For each auto cycle, then, given the MRO end time tL (i.e.,

the time of the end of transmission from the subsatellite), arry tran-

mission time t can be easily turned into a subsatellite store time t1 by

the equation

t = (t- t (tt - t b)/ (t - ts) + t (1)

where

t = t- 512 seconds

tb= tL - 7104 seconds

t t - 960 seconds
e L

The process is schematically illustrated in Figure 16. The initial

MRO after the auto-cycle command cannot be timed this way and tends

to duplicate data already transmitted in the current pattern of subsatellite

operation. Therefore, this data has been discarded unless clearly

required.

The above procedure will be degraded if even a few of the last

frames of any MRO are lost from the auto cycle. A solution is consider-

ation of the measured MRO end times from a series of cycles (during

which no commands were sent to the subsatellite). When graphed, the

times appear as in Figure 17. Assuming that the real MRO end times

for each of the orbits is greater than or equal the measured MRO end

times, we draw a line through certain of the measured end times such
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that all measured end times fall essentially on the line or below it. In

the figure, four measured end times fall on a line which meets the cri-

teria. The line can then be'numerically determined by a least squares

procedure applied to the points which graphically lie on it. GeneraJ-y,

over the period between commands at least three measured MRO end

times will be real end times, i. e., with no frames at the end of the MRO

lost at the ground station. The least squares line will determine very

precisely both the exact length of the auto cycle and the true MRO end

times for each orbit. Equation (1) can then be used to assign store times

to the individual data frames. As an example, for the data of Figure 17

the four points on the line fit within 1 second of the least-squares fit

line and determined the length of the auto cycle to be 7104. 7 + 0. 1 seconds.
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Appendix C: Impact Parameters

The impact parameters used in connection with Apollo subsatellite

particle data are intended as a means of merging orbital and magnetic

field data in a way useful to the interpretation of the particle data. The

parameters cover four basic categories: proton shadows, general sub-

satellite electron shadows, telescope electron shadows, and analyzer

electron shadows. The impact parameters are described sequentially

in detail as follows.

Protons at the energies (40 keV - 2 MeV) and pitch angles

(900 150 generally) seen by the subsatellite particle telescopes have

gyroradii r large compared to the lunar radius Rm and travel distances

L along the magnetic field in one gyroperiod usually large compared

to R . As a reasonable approximation, the proton trajectories are
m

straight lines near the moon and the shadowing of telescope protons by

the moon is proportional to the fractional of the telescope aperture

subtended by the moon. The shadowing is essentially independent of

the magnetic field strength and direction. A theoretical intensity I of

protons seen by the telescopes and normalized to the incident proton

flux may then be calculated as a function of orbital position of the sub-

satellite and thus of time. This normalized flux is then plotted as a

function of time.

Looking at the actual formulas, let the angular response function

of the telescopes be approximated by

cos (. 118) ( / 9. 720) for e <15. 30
e) = (c1)

0 for e > 15. 30

where 0 is the angle from the axis of the telescope (parallel to the

satellite spin axis) to the trajectory of an incoming proton.
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Let

ed = 1/2 of the detector response = 15.3 °

m = 1/2 of the cone subtended by the moon at the

-1
satellite = sin (R /R)

6c = angle from the detector axis to the moon's
c

-1
center = cos (- S R)

where

R = orbital radius of the subsatellite

S = unit vector parallel to the satellite spin axis

R = unit vector in the direction from the moon's center

to the subsatellite.

We then have that the normalized intensity I of protons seen

by the telescopes will be given by

1 8 > +c m d

I= (Ii + I) /Io m + c > n d (C 2)

o c <8 - d

where the definitions are made that

IO ZrTod f(G) sin deO (C 3)
0 0

S2n sgn (Bc - 6 c m f (8) sin GdO (C 4)

2 = -d m X(e) f (0) sin edO (C 5)

sin 1( + 0 - sin ( + -+ ) (C 6)

X() = cos 2sin
sin 9 sin t

Electrons present a different case from that of protons, since the

electron gyroradii satisfy r <Rm. Then to first approximation, electron

shadows will be seen if the magnetic field line on which the subsatellite

lies intersects the moon. We then define a satellite impact parameter D
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by the equation

D = ID I- (R B)B /R m  (C 7)

with R a vector from the moon's center to the subsatellite and B a unit

vector in the direction of the magnetic field vector B. D is the distance

in the plane of closest approach of the subsatellite field line to the center

of the moon. D is normalized in units of R so that if D <1, the sub-m

satellite lies on a field line passing through the moon. The pitch angle a

of the particles seen by telescopes is given by
-1

a = cos- [-Sk (C 8)

where S is a unit vector parallel to the satellite spin axis in a direction

out from the telescope apertures and

k = k'
k = R - D = (R B)B (C 9)

Note that this definition of pitch angle is independent of the sign of the

magnetic field vector and instead depends on whether the telescopes are

inclined toward (a < 9 0 0) or away from (n > 900) the moon. D (in lunar

radii) and oa (in degrees) are plotted together as a function of time.

For energies >10 keV and in weak fields, the effect of electron

gyrational motion may not be neglected. For this reason, the parameters

d and d' have been defined. We will consider first the telescopes. Their

narrow apertures cause the telescopes to see electrons whose guiding

centers are located on field lines to the side of the subsatellite magnetic

field line. The telescope d value is simply the distance of the field line

on which the guiding center of the electron entering along the telescope

axis lies from the surface of the moon in the plane to the magnetic field

and through the moon's center. The d value is normalized to the electron

gyroradius. Since for electrons L <<R , d < 1 implies that the tele-

scopes will see an electron shadow. The d' parameter is defined similarly
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to that of the d parameter except the distance is taken between the field

line on which the guiding center lies and the moon's surface in a plane

through the subsatellite and normal to the magnetic field. The d parameter

is relevant to electrons when a < 900, the d' parameter when a > 900

Both d and d' are functions of electron energy. The parameters are

plotted at the lower energy thresholds of channels 1, 3, and 5 of the

telescopes as a function of orbital time.

The calculation of d and d' proceeds relatively simply. We

define angles

a( for a < 90 0

a1 =

90 a 90
(C 10)

900 for a>900

(Y = >90

r (a) is the gyroradius of an electron with pitch angle a. Note that r (a)

is implicitly a function of electron energy E as well. If we further define

G (Sx) / x B (C 11)

we then have

d = ( +Gr (a1) - Rm) / r(al) (C 12)

and

d' = ( D + Gr.(2 ) I -R ')r(). (C 13)

It should be recalled that

k 1 = I - D = (R B) BI (C 14)

so that we may define

VR - k for R >k
Rm m (C 15)

0 for R km
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Because the electrostatic analyzers see electrons at all pitch angles

and different values of gyroradii, the parameters d and d' must be defined

differently from those of the telescopes. The sector structure of the C5

analyzer must also be taken into account. To first approximation, a simple

but useful parameter to consider is the distance of the subsatellite field

line from the moon's surface normalized to units of twice the electron

gyroradius at pitch angle 900 and an average energy as seen by the

analyzers. d < 0 for an analyzer implies the analyzer is in an electron

shadow while d > 1 implies the analyzer is totally unshadowed. The analyzer

d values for C1 and C5 have been plotted.

Let R be twice the gyroradius of an electron with pitch angle

900 and energy EAVG , with EAVG defined for the analyzers as

0. 552 keV for C1

1. 98 keV C2
E (C 16)EAVG 6. 16 keV C4

14. 2 keV C5

We then redefine

d = ( - R m ) / R (C 17)

and

d = ( -Rm') / R (C 18)

Also plotted for the C5 detector are tick marks to indicate whether

sectors I and II or sectors III and IV look generally toward the moon.
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Appendix D. Apollo Subsatellite Spectral Computations

The following is an outline of the procedure used in deriving

separate proton and electron spectra from Apollo subsatellite particle

telescope data.

The te'escope experiment consists of two matched Si detectors,

telescopes A and B, approximately 310 .pm thick, one (theB telescope)

covered by a thin organic foil. A second pair of detectors, one mounted

behind each of the primary detectors, is used for anticoincidence rejec-

tion of counts due to penetrating particles. Counts from each of the

telescopes are pulse-height analyzed into 6 energy channels with the

channel thresholds set between the two telescopes such that the individual

channels are matched in incident electron energies. The foil over the B

telescope stops protons up to -310 keV so that while the open telescope

(the A telescope) is sensitive below incident energies of 310 keV to

both protons and electrons, the B telescope is sensitive below 310 keV

only to electrons.

Table 2 shows the nominal energy calibrations for the two sub-

satellites. If proton fluxes above 310 keV are small, to lowest order

channels 1 to 4 of the B telescope (denoted by SB1 to SB4) contain counts

due only to electrons and the difference between paired channels of the A and

B telescopes gives those counts due only to protons in channels 1 to 4 iof

the A telescope (denoted by SAl to SA4). If substantial numbers of protons

greater than 310 keV exist, then since the efficiency of the detectors for

electrons with energies above 310 keV decreases, SA5 to lowest order con-

tains counts due only protons. The difference between SB 1-4 and SA5 will

then yield the electron counts in SB1 - 4, and the difference between these

electron counts and SAl - 4 yields the proton counts in SA1 - 4. Note



79.

that SB1 - 4 is a single channel in the B telescope and SA1 - 4 is a single

channel in the A telescope: counts in SB1 are found by subtracting SB2,

SB3, and SB4 f.rom SB1 - 4.

The above computation is in design a simple one; however, several

complications exist. First, the geometry of the experiment is such that

the anticoincidence is not fully effective against penetrating cosmic ray

particles and a low level background is thus present. Second, the detector

response to electrons is not sharply cut off and SA5 may contain a signifi-

cant number of electron counts. Third, to subtract proton counts in SA5

from the channels SB1, SB2, SB3 and SB4 individually requires knowledge

of the shape and slope of the proton spectrum above 310 keV. Fourth, an

apparent gain shift occured in the A telescope electronics on PFS-1 which

changed its energy thresholds and shifted the A telescope energy channels

relative to the B telescope channels.

A process of iteration is used to calculate separate electron and

proton spectra. As the first step, count rates due to cosmic ray back-

ground and spacecraft secondaries not anticoincidenced out and the

calibration source background are-subtracted from the individual telescope

channels. Analysis has indicated that best results are produced by using

the PFS-1 observational upper limits to the background in the program for

the low telescope channels, multiplied by a scale factor when an energetic

proton event is iin progress or when the telescopes are in a lunar proton

shadow. Where the A telescope gain-shift is present, modified backgrounds

are used. The background fluxes (normalized to the electron energy widths

of the telescope channels) used in the program are summarized in Table 9.

The calibration source background is estimated to be 2 x 10 - 4 cts/(cm - 2

sec- ster-keV).
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Estimated initial values of certain spectral parameters are combined

with the data in order to produce a lowest order approximation to the spectra.

These spectra are used to refine the initial estimates and produce better

spectra, and so on. The detailed structure of the calculation is described

below. Four or fewer iterations of the calculation produces reasonable

convergence in the spectra. Abnormally large or small numbers of counts

in any single channel can give rise to incorrect results in all channels,

however, because the calculation interrelates the various channels. To

minimize these errors, spectral slopes are calculated over longer energy

baselines than are minimally possible, e. g. a proton spectum is calculated

using channels SA2 or SA3 and SA5 instead of SA4 and SA5.

Let us consider qualitatively one of the iterations, assuming that

we have available from previous steps approximate electron and proton

spectra. We approximate the proton spectrum in the energy range of SA5

as a power law and calculate the coefficients of that law from the proton

fluxes in SA2 and SA5. This spectral law can be used to determine indivi-

dually the counts due to protons in SBl, SBZ, SB3, and SB4. Electron

fluxes in SB to SB4 can be calculated by subtracting the proton counts and

dividing by the electron efficiency of the B telescope in these channels.

The electron fluxes in SBZ and SB4 determine an electron power law spectrum.

This electron spectrum, if extrapolated to electrons of the energies seen

in SA5 and convoluted with the detector. electron response, will yield a

revised estimate of the flux in SA5 due to protons. At the same time, the

match of the A and B telescope channels in electron energies will alllow

direct determination of the counts due to protons in SA1 to SA4 by sub-

traction of the electron counts in SB1 to SB4 respectively (possibly with

a correction factor for gain shift between the two telescopes). The improved
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estimates of both the proton and electron spectra can be used to repeat

the iteration. In the final spectra, SA6, SB6 and SB5 have electron counts

subtracted from them in a manner similar to SA5, producing additional

points on the proton spectrum.

Statistical error bars on the final spectral points include the

effects of cos. lic ray background subtraction, subtraction of protons

from the B telescope channels, subtraction of electrons from the A tele-

scope channels, and the subtraction in each telescope of channels 2, 3, and

4 from channel 1-4 to get channel 1.

The computations will now bedescribed in more explicit algebraic

detail. The electron efficiency of the telescopes as a function of energy

has been constructed using data from Berger et al., (1969) for 300 pm

thick Si detectors and is illustrated in Figure 3. The line is a possible

linearized approximation to this response and represents the function

assumed in the spectral calculations. Let GAIN stand for the gain shift

factor between the A and B telescopes. Let the function C(X) be defined

as the total number of counts in channel X during the given accumulation

period and Ci(X) the counts due of particles to type i. The function F(X)

is defined as the flux (dJ/dE in [ cm ster sec keV] ) in channel X nor-

malized per unit energy as if all counts in channel X are due to electrons,

whereas Fi(X) is the flux in channel X due to particles of type i and nor-

malized by the energy width of channel X in particles of type i. Further,

let AEi(X) be the energy band width of channel X in particles of type i with

Eu ' i(X) and E1, i (X) respectively the upper and lower energy limits of

channel X in particles of type i. With the notation described, consider

the first step of the iteration after the cosmic ray background has been

subtracted. Taking the response of channel SA5 to ambient electrons
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to be of the order 30%, SA5 and SB1 - 4 are assumed as an initial step

in the iteration to be composed entirely of electrons if

F SA L-4
GAIN - F (SBl-4) 1 <0. 3 F (SB 1-4) (D 1)

If (DI) is not met, then SA5 iisinitially approximated to contain only

proton counts. Let the proton and electron spectra be represented by
Y Y

power laws oi the form A E and A E e.respectively. Supposingp e

initially yp = 2. 5, then in the case where SA5 contains only proton

counts, F(SA5) determines A by

A = (y + 1) F(SA5) AE (SA 5 ) / (EuS ) y + (E S )Yp+l] (D 2)

and the spectral law can be used to determine individually the counts in

SB1, SB2, SB3, and SB4 due to protons; e. g.,

IFp (SB2) = ( ) (EuP)p + -(El, py +1/ /E (SB2). (D 3)
P(B2P SB2

Electron fluxes in SB 1 to SB4 can then be calculated by subtracting the

counts due to protons and dividing by the detector electron efficiency

(~. 86) in these channels. The electron fluxes in SB2 and SB4 can be used

to determine a value for y e
e

Ye = [ log (F(SB4) A E e (SB4))- log (F(SB2) A Ee(SB2)]

flog (Eu,e ) + log (EB4e og ( e +log (E Be )(D 4)

ye and F(SB4) yield A and this spectral law, extrapolated.to electrons of

energies seen in SA5, can be convoluted with the electron response function

to indicate the counts in SA5 due to electrons. For electron response given

by a function of the form m(logl0E)+ b, the flux due to electrons in SA5 will

be given by
(7 m ] E u , p

e 1) (EYe + 1) (m log 1 0 E -( + 1)2. 303 + b) SA5 ( 5)
SAE1 P

SA5
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We then obtain a revised number for the flux of protons in SA5. At the

same time, the counts in SB1 to SB4, due to electrons, can be subtracted

from SA1 to SA4 to yield the counts due to protons; e. g.,

CP (SAZ) = C(SA2)- ce (SB2)
(GAIN) (Ye + 1) (D 6)

F(SA2) and F(SA5) yield a value for yp via an equation like (4). Yp and

the revisedproton flux in SA5 can again be used to calculate Ap and the

calculation iterated.

The statistical uncertainty in the number of counts C(X) in channel X

will be given by the standard deviation IC(X). Where the actual number of

interest for channel X is C(X) - N with N for example counts due to cosmic

ray background,. the relevant uncertainty will be given by 4C(X) + N. Let

S(X) stand for the uncertainty in the number of counts in channel X and B(X)

for the cosmic ray background in channel X. Then the errors in the proton

spectral points in channels SA5, SB5, SA6, and SB6 will include contribu-

tions from the original number of counts in a given channel plus the back-

ground counts subtracted out plus the electron counts subtracted out; e. g.,

S(SA5) = C (SA5) + B (SA5) + Ce (SA5) (D 7)

For channels SB1 to SB4, additional errors will be created by counts

subtracted as protons; e.g.,
C (SB2)

S(SB2) = C (SB2) + B(SB2) - (SA5 ) S(SA5) (D 8)

Channel SBI1 because it is produced by subtractions of SB2, SB3, and

SB4 from SB 1-4, will have the larger uncertainty,

S(SBl 1) = C(SBl-4) + B(SBl-4) + C(SB2) + B(SB2) +C(SB3)

+ B(SB3) + C(SB4) + B(SB4) +C (SB1) S(SA5) ] (D 9)
\CP(SA5))
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The proton channels SAl to SA4 pick up factors due to electron counts; e. g.,

S(SA2) = C(SA2) + B(SA2) + S(SB) 1 (D 10)
(GAIN) e

and

S(SAl) = C(SAl-4) + B(SAl-4) + C(SA2) + B(SA2) + C(SA3) + B(SA3)

(GAIN) e+
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Appendix E: Calculation of Directional Electron Flux Distributions

This appendix describes in detail the procedure by which electron

directional distributions are obtained from Apollo subsatellite real-time

electrostatic analyzer data. The analyzers are mounted with their

apertures norr ial to the subsatellite spin axis and are oriented relative

to the sensitive axis of the magnetometer and the sun sensor (both

directions indicated.by vectors)as shown in Figure 18. With reference to

Table 1, each analyzer has a fan-shaped angular response with the

narrow angle in the plane normal to the spin axis.

The demodulated and despun real-time magnetometer data

generated by UCLA allows us to determine the absolute orientation e of

each of the analyzers at any time t with respect to the magnetic field

direction and the sun direction in the plane normal to the spin axis. Table 10

summarizes the formulae and offsets required to make this determination

and the accumulation times relative to the frame time t on the JSC tape

of each of the detector channels in the real-time mode.

Consider the problem of deriving the distribution with respect to

the sun direction. With the information in Table 10, we can calculate for

any of the analyzers what range of absolute angles are swept during any

given data accumulation period A t. The counts measured during each

accumulation yield a data point on the angular distribution whose angular

width is proportional to the ratio of At to the subsatellite spin perior T
s

( -5 seconds for both subsatellites). Angular resolution Aa of the indivi-

dual accumulations is approximately 350 for C5, 700 for C1, and 1400 for

C2 and C4. However, since T is not a simple multiple of the data

accumulation periods, the data points taken from successive spin periods

will not precisely overlap in the range of angle covered.
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Suppose that an analyzer with infinitesimally fine angular resolu-

tion in the plane normal to the spin axis would observe an angular distri-

bution f(yv). We will ignore for the moment statistical uncertainties. A

detector with a finite resolution Aa will then observe a distribution

f'( , Aa) = y+ i 2  f(') dQ' /a, (E 1)
C- Aa/ 2

although it may require many spin periods to obtain samples at suffi-

ciently many a to define the shape of f'(a, Aa). If the count statistics

are poor, it will also be necessary to construct some angular bin

structure such that data points can be combined and the count statistics

improved. For bins of width Ab, the function then actually observed is
a +6 b/2

f"(, a, Ab) = f'(') da'/Ab (E 2)
y-A b/

where a will in general only take on discrete values; e. g., if A b = 200,

ac might be 100, 300, 500, etc. for bins running from 00 to 200, 200 to

400, etc. The program, for an accumulation between times t 1 and t2

determines via Table 10 the angle e corresponding to the time (t 1 + t2 )/2

and places the counts from the accumulation in the angular bin containing

0. If counts are gathered in this manner for a time

tfill rt (Ts/[Ts - 5. 0 seconds]) (E 3)

or multiples thereof, during which time the ambient particle distribu-

tion should not change, the bins will be more or less uniformly filled.

Where fine time resolution (< tfill) is not required by changes in the

ambient distribution and/or is not desired for statistical or analysis

reasons, the above procedure then generates f" as a best approximation to

f'.
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Where count rates are high and fine time resolution is desired

because the distribution may be changing with time, the required averag-

ing time tfill to generate f"(a,) as above may be excessive. Also, the

accumulated counts in different bins are actually representative of the

ambient distribution at different times. Time variations in a scale shorter

than t will be manifested only in particular angular ranges of the
fill

binned distribution. One alternative, not currently implemented,

would be to examine only a small number of data points at a time,

perhaps fit these with some functional form assumed for the distribution,

and then watch the variation in the fit parameters as a function of time.

This method is essentially the same as taking very broad angular bins

in determining f"(a, A a, A b - A a). A second alternative is to force a

more even distribution of the counts into the narrow bins, a method which

smooths the data as if broad bins were used but which allows comparison

of successively accumulated distributions without the necessity of assuming

a functional form with which to fit the binned distribution.

We will continue to neglect the finite angular aperture of the

detectors themselves. We set up a system of bins as before. We divide

the counts from each accumulation by determining for what fraction of

the accumulation period the detector was sensitive to particles with

incident angles in a given bin. After dividing the counts from all the

accumulations among the various bins, the count rate and then the flux

in each bin is found by dividing the total number of counts in each bin by

the time the detector was sensitive to particles with incident angles in

that bin. We will call the resulting distribution f"'(cy, A a, A b).

In general, the amplitude of f'(cy, A a), denoted here by

A(f'[ y, Aa] ), will be less than A(f[ v]) and A (f"[cy, Aa, Ab] ) <A(f'

or, A a]). The amplitudes decrease as the angular resolution decreases.
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We expect A(f"'[' , Aa, Ab]) N A(f"[O , Aa, Aa + Ab]). The function

f'"( y, Aa, Ab) should have better directional resolution than f"(c, A a,

Aa + Ab), assuming adequate statistics, simply because f"' is defined by

more bins.
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Appendix F: Maps of Electron Scattering by Lunar Surface Magnetic Fields

This appendix describes the method by which maps showing electron

scattering regions on the lunar surface may be constructed using electron

data from the C5 sectored detector. For each set of sector measurements,

the simultaneo ,sly measured magnetic field direction is projected from

the subsatellite position to the lunar surface. The presence or absence of

scattered electrons from the location is noted and combined with data

in other orbits from this same location.

When many orbits of data are analyzed in this way, magnetized

surface regions which consistently scatter electrons should stand out

in the resulting surface maps.

The orbital position and magnetic field direction are taken from

the JSC ephemeris tapes and UCLA magnetometer tapes. The program

determines where the subsatellite field line intersects the surface. Let

r = (rm + h) rs be the subsatellite position

where

r = lunar radius
m

h = subsatellite altitude

r = subsatellite position unit vector
s

All vectors are taken to be in the selenographic coordinate system.

The condition for intersection is

r = + (F 1)
m s

where I is a vector from the subsatellite position along the magnetic

field to the lunar .surface and r.m is a vector from the origin of coordinate

to this intersection point of the field line with the lunar surface. The inter-

section unit vector is



90.

h 2
r = (1 +-) r + (F 2)

m r s r
m m

If we dot equation (F 1) into itself and substitute from above,

r = (rm +h) r + 1 (rm + h) rs + ) (F 3)

which is an equation for a. The solution, in a form convenient for

programming, is

2 h F ^2 h h
(1 + h ) (r - £) - ( s " + ( - ) (2 + )

(r . )2 -

that the field line intersect the surface and the condition is that the

quantity inside the square root be positive. From rm , found by sub-

stituting (F 4) into (F 2), the selenographic longitude and latitude of

the intersection print may easily be found.

The ratio of scattered to incident flux is calculated for the 0 0- 4 5 0

pitch angle particles (sectors 1 and 4) and for the 450 900 pitch angle

particles (sectors 2 and 3). Which sectors measure incident flux and

which measure scattered flux depend on the magnetic field direction

b, with r • b < 0 corresponding to scattered flux in sectors 3 and 4

and r b > 0 scattered flux in sectors 1 and 2. If the ratios of
s

scattered to incident flux are greater than some specified cutoff

FLIM, we assume electrons are being scattered. The effect of the

accumulator conversion error (see Appendix A) is handled in the follow-

ing way. Let ID, IU be the incident and scattered counts, respectively.

Let R be the true ratio of scattered to incident flux. We assume electrons

are scattered then in the following cases:

IU
1) ID > 32, IU > 32; R FLIM

IU FLIM (F5)
2) ID > 32, IU s32; R I FLIM (F 5)

IU
3) ID < 32, IU < 32; R ID + 16 FLIM

4) ID 32, IU 2 32
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Low count measurements are tested for statistical counting

accuracy before being used. The standard deviation of the ratio

R = IU/ID (F 6)

is

CR 2 IU 2 ID Z
(F 7)

and if we let

IU 1iE, aID=

then

I 1+ (F 8)
R IU ID

The point is used only if a R/R is less than some specified parameter SLIM.

To eliminate cases where there is a glitch on the magnetic field

tape or where there is a large change in the direction of the magnetic

field during a measurement, all cases where R > 2 for either 00-450

or 45 - 9 00 pitch angle are eliminated.

The output of the program consists of maps of the lunar surface in

selenographic longitude and latitude with the surface divided into 20 by 20

bins. - Separate maps are constructed for the two pitch angle sectors

00-450 and 450-900 and for points where the magnetic field vector points

into the lunar surface and out of the lunar surface. Plots are made showing

both the number of observations in each bin and the number of observations

in each bin where scattered electrons were observed. For each bin, a

number or symbol representing the ratio of the number of observations

where scattering was seen to the total number of observations in that bin

is plotted. The meaning of the symbols is summarized in Table 11. Bins

with no observations are blank.
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The particle experiments of the Apollo 15 and 16 Particle and

Fields Subsatellites have provided new and important information on

magnetospheric dynamics and topology, lunar properties and interactions

with the surrounding medium, the behavior of interplanetary particle

populations, and solar flare processes.

These spacecraft have made the first direct measurements of

electric fields in the magnetotail (talks #13, 17, 21). These measurements

are direct confirmation of the dynamic open magnetospheric model

proposed by Dungey (1961). In addition observations from these

satellites have provided comprehensive measurements of the

energetic particle population in the magnetotail at lunar orbit,

including the first measurements of protons from -40 to 300 keV.

(Ref. 4, 6, 7, 10, 21, talks 1, 2, 3, 6, 11, 14, 19, 26, 29, 30). These

measurements show clearly that the protons carry the bulk of the

energy in the magnetotail plasma sheet. The subsatellites have

observed 40- 100 keV protons upstream from the bow shock at

60 RE geocentric distance (Ref. 11, 17, talks 8, 20), thus showing

that the solar wind - magnetosphere interaction can affect the

interplanetary medium well away from the magnetosphere.

The electron observations have proved to be highly sensitive

indicators of regions of t'emanent lunar surface magnetization.

Electrons are scattered back by the increased magnetic field in

regions of surface magnetization. We have been able to use the

electron data to map the lunar surface with much higher sensitivity

than the magnetometer (Ref. 22, 25, talks 31, 33). The preliminary

maps show that substantial fine: structure in magnetization occurs
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over the lunar surface with some of the strongest regions associated

with the edges of the mare.

The interaction of the moon with the solar wind and interplanetary

medium has been explored in detail with the subsatellites' data

(Ref. 4, tables 4, 5). Theoretical computations (Ref. 8) have

been combined with the subsatellite observations (Ref. 10, 21) to

provide a consistent picture of the characteristics of the interaction.

We have found that in the solar wind there are cavity regions

behind the moon which are a function of the particle energy and

anisotropy, and that disturbances, possibly shocks, are set up

by certain regions of the lunar surface.

The subsatellite observations provide the first high sensitivity

measurements of low energy electrons and protons in the

interplanetary medium. We have reported the first measurements

of interplanetary 40-300 keV protons and 0. 5 to 20 keV electrons

during solar quiet times (Ref. 12, 20, talks 21, 28, 32). In addition,

the observations show a previously unreported component of 2Z-to 6 keY

electrons whose behavior differs from the lower energy non-

thermal tail of the solar wind and the higher energy solar flare

and active regions electron fluxes. In addition, we have reported

a remarkable energetic porton-electron splitting across an

interplanetary shock (Ref. 5, 7, talks 8, 12).

The subsatellites have also provided the first observations

of solar flare particles in the energy range 40-300 keV for

protons and 0. 5 to 20 keV for electrons (Ref. 13, 19, 23 talks 7, 9, 10

15, 22, 24, 25, 32). These observations are particularly important

because of steep energy spectrum of these particles imply that most
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of the energy in accelerated flare particles resides in the low energy

component. These measurements show that the electron spectrum

extends down to -5 keV before any rollover but that the proton spectrum

is already flattening at - 300 keV. The acceleration of 5 - 100 keV

electrons appear to be the major energy output for many flares (Ref.

15, 18, 19, 23, talks 7, 9, 10, 15, 24, 25). Partly with the subsatellite

data we have shown conclusively that -10 - 100 keV electrons produce

type III radio burst emission as they escape from the sun (Ref. 9, 16,

talks 16, 18, 23).

In addition, a number of studies pertaining to instrument design

were performed and the results published (Ref. 1, 2, 14).

Note: Numbers refer to the previously submitted bibliography contained

in the Final Report.


