463 research outputs found
Does the Quality of Rural and Urban Nursing Homes Differ?
The results of this study suggest that there is little basis for assuming that rural or urban location affects nursing home quality. The study reveals no systematic differences among nursing facilities in Maine in structural measures of quality, such as nursing hours, or in the incidence or prevalence of resident conditions and outcomes
Engineering HIV envelope protein to activate germline B cell receptors of broadly neutralizing anti-CD4 binding site antibodies
Broadly neutralizing antibodies (bnAbs) against HIV are believed to be a critical component of the protective responses elicited by an effective HIV vaccine. Neutralizing antibodies against the evolutionarily conserved CD4-binding site (CD4-BS) on the HIV envelope glycoprotein (Env) are capable of inhibiting infection of diverse HIV strains, and have been isolated from HIV-infected individuals. Despite the presence of anti–CD4-BS broadly neutralizing antibody (bnAb) epitopes on recombinant Env, Env immunization has so far failed to elicit such antibodies. Here, we show that Env immunogens fail to engage the germline-reverted forms of known bnAbs that target the CD4-BS. However, we found that the elimination of a conserved glycosylation site located in Loop D and two glycosylation sites located in variable region 5 of Env allows Env-binding to, and activation of, B cells expressing the germline-reverted BCRs of two potent broadly neutralizing antibodies, VRC01 and NIH45-46. Our results offer a possible explanation as to why Env immunogens have been ineffective in stimulating the production of such bNAbs. Importantly, they provide key information as to how such immunogens can be engineered to initiate the process of antibody-affinity maturation against one of the most conserved Env regions
Molecular Signatures of Hemagglutinin Stem-Directed Heterosubtypic Human Neutralizing Antibodies against Influenza A Viruses
Recent studies have shown high usage of the IGHV1-69 germline immunoglobulin gene for influenza hemagglutinin stem-directed broadly-neutralizing antibodies (HV1-69-sBnAbs). Here we show that a major structural solution for these HV1-69-sBnAbs is achieved through a critical triad comprising two CDR-H2 loop anchor residues (a hydrophobic residue at position 53 (Ile or Met) and Phe54), and CDR-H3-Tyr at positions 98±1; together with distinctive V-segment CDR amino acid substitutions that occur in positions sparse in AID/polymerase-η recognition motifs. A semi-synthetic IGHV1-69 phage-display library screen designed to investigate AID/polη restrictions resulted in the isolation of HV1-69-sBnAbs that featured a distinctive Ile52Ser mutation in the CDR-H2 loop, a universal CDR-H3 Tyr at position 98 or 99, and required as little as two additional substitutions for heterosubtypic neutralizing activity. The functional importance of the Ile52Ser mutation was confirmed by mutagenesis and by BCR studies. Structural modeling suggests that substitution of a small amino acid at position 52 (or 52a) facilitates the insertion of CDR-H2 Phe54 and CDR-H3-Tyr into adjacent pockets on the stem. These results support the concept that activation and expansion of a defined subset of IGHV1-69-encoded B cells to produce potent HV1-69-sBnAbs does not necessarily require a heavily diversified V-segment acquired through recycling/reentry into the germinal center; rather, the incorporation of distinctive amino acid substitutions by Phase 2 long-patch error-prone repair of AID-induced mutations or by random non-AID SHM events may be sufficient. We propose that these routes of B cell maturation should be further investigated and exploited as a pathway for HV1-69-sBnAb elicitation by vaccination
Non-detection of HC_(11)N towards TMC-1: constraining the chemistry of large carbon-chain molecules
Bell et al. reported the first detection of the cyanopolyyne HC_(11)N towards the cold dark cloud TMC-1; no subsequent detections have been reported towards any source. Additional observations of cyanopolyynes and other carbon-chain molecules towards TMC-1 have shown a log-linear trend between molecule size and column density, and in an effort to further explore the underlying chemical processes driving this trend, we have analysed Green Bank Telescope observations of HC_9N and HC_(11)N towards TMC-1. Although we find an HC_9N column density consistent with previous values, HC_(11)N is not detected and we derive an upper limit column density significantly below that reported in Bell et al. Using a state-of-the-art chemical model, we have investigated possible explanations of non-linearity in the column density trend. Despite updating the chemical model to better account for ion–dipole interactions, we are not able to explain the non-detection of HC_(11)N, and we interpret this as evidence of previously unknown carbon-chain chemistry. We propose that cyclization reactions may be responsible for the depleted HC11N abundance, and that products of these cyclization reactions should be investigated as candidate interstellar molecules
Non-detection of HC_(11)N towards TMC-1: constraining the chemistry of large carbon-chain molecules
Bell et al. reported the first detection of the cyanopolyyne HC_(11)N towards the cold dark cloud TMC-1; no subsequent detections have been reported towards any source. Additional observations of cyanopolyynes and other carbon-chain molecules towards TMC-1 have shown a log-linear trend between molecule size and column density, and in an effort to further explore the underlying chemical processes driving this trend, we have analysed Green Bank Telescope observations of HC_9N and HC_(11)N towards TMC-1. Although we find an HC_9N column density consistent with previous values, HC_(11)N is not detected and we derive an upper limit column density significantly below that reported in Bell et al. Using a state-of-the-art chemical model, we have investigated possible explanations of non-linearity in the column density trend. Despite updating the chemical model to better account for ion–dipole interactions, we are not able to explain the non-detection of HC_(11)N, and we interpret this as evidence of previously unknown carbon-chain chemistry. We propose that cyclization reactions may be responsible for the depleted HC11N abundance, and that products of these cyclization reactions should be investigated as candidate interstellar molecules
Structural basis for germline antibody recognition of HIV-1 immunogens
Efforts to elicit broadly neutralizing antibodies (bNAbs) against HIV-1 require understanding germline bNAb recognition of HIV-1 envelope glycoprotein (Env). The VRC01-class bNAb family derived from the VH1-2*02 germline allele arose in multiple HIV-1–infected donors, yet targets the CD4-binding site on Env with common interactions. Modified forms of the 426c Env that activate germline-reverted B cell receptors are candidate immunogens for eliciting VRC01-class bNAbs. We present structures of germline-reverted VRC01-class bNAbs alone and complexed with 426c-based gp120 immunogens. Germline bNAb–426c gp120 complexes showed preservation of VRC01-class signature residues and gp120 contacts, but detectably different binding modes compared to mature bNAb-gp120 complexes. Unlike typical antibody-antigen interactions, VRC01–class germline antibodies exhibited preformed antigen-binding conformations for recognizing immunogens. Affinity maturation introduced substitutions increasing induced-fit recognition and electropositivity, potentially to accommodate negatively-charged complex-type N-glycans on gp120. These results provide general principles relevant to the unusual evolution of VRC01–class bNAbs and guidelines for structure-based immunogen design
Phase transitions in LaFeAsO: structural, magnetic, elastic, and transport properties, heat capacity and Mossbauer spectra
We present results from a detailed experimental investigation of LaFeAsO, the
parent material in the series of "FeAs" based oxypnictide superconductors. Upon
cooling this material undergoes a tetragonal-orthorhombic crystallographic
phase transition at ~160 K followed closely by an antiferromagnetic ordering
near 145 K. Analysis of these phase transitions using temperature dependent
powder X-ray and neutron diffraction measurements is presented. A magnetic
moment of ~0.35 Bohr magnetons per iron is derived from Mossbauer spectra in
the low temperature phase. Evidence of the structural transition is observed at
temperatures well above the structural transition (up to near 200 K) in the
diffraction data as well as the polycrystalline elastic moduli probed by
resonant ultrasound spectroscopy measurements. The effects of the two phase
transitions on the transport properties (resistivity, thermal conductivity,
Seebeck coefficient, Hall coefficient), heat capacity, and magnetization of
LaFeAsO are also reported, including a dramatic increase in the magnitude of
the Hall coefficient below 160 K. The results suggest that the structural
distortion leads to a localization of carriers on Fe, producing small local
magnetic moments which subsequently order antiferromagnetically upon further
cooling. Evidence of strong electron-phonon interactions in the
high-temperature tetragonal phase is also observed.Comment: Revised and expanded magnetization and Mossbauer spectroscopy
section. Clarified sample preparation description. This paper contains some
results from arXiv:0804.0796. 10 figure
Immunization expands B cells specific to HIV-1 V3 glycan in mice and macaques.
Broadly neutralizing monoclonal antibodies protect against infection with HIV-1 in animal models, suggesting that a vaccine that elicits these antibodies would be protective in humans. However, it has not yet been possible to induce adequate serological responses by vaccination. Here, to activate B cells that express precursors of broadly neutralizing antibodies within polyclonal repertoires, we developed an immunogen, RC1, that facilitates the recognition of the variable loop 3 (V3)-glycan patch on the envelope protein of HIV-1. RC1 conceals non-conserved immunodominant regions by the addition of glycans and/or multimerization on virus-like particles. Immunization of mice, rabbits and rhesus macaques with RC1 elicited serological responses that targeted the V3-glycan patch. Antibody cloning and cryo-electron microscopy structures of antibody-envelope complexes confirmed that immunization with RC1 expands clones of B cells that carry the anti-V3-glycan patch antibodies, which resemble precursors of human broadly neutralizing antibodies. Thus, RC1 may be a suitable priming immunogen for sequential vaccination strategies in the context of polyclonal repertoires
- …