205 research outputs found

    Generation of high-energy monoenergetic heavy ion beams by radiation pressure acceleration of ultra-intense laser pulses

    Full text link
    A novel radiation pressure acceleration (RPA) regime of heavy ion beams from laser-irradiated ultrathin foils is proposed by self-consistently taking into account the ionization dynamics. In this regime, the laser intensity is required to match with the large ionization energy gap when the successive ionization of high-Z atoms passing the noble gas configurations [such as removing an electron from the helium-like charge state (Z−2)+(\text{Z}-2)^+ to (Z−1)+(\text{Z}-1)^+]. While the target ions in the laser wing region are ionized to low charge states and undergo rapid dispersions due to instabilities, a self-organized, stable RPA of highly-charged heavy ion beam near the laser axis is achieved. It is also found that a large supplement of electrons produced from ionization helps preserving stable acceleration. Two-dimensional particle-in-cell simulations show that a monoenergetic Al13+\text{Al}^{13+} beam with peak energy 1 GeV1\ \text{GeV} and energy spread of 5%5\% is obtained by lasers at intensity 7×1020 W/cm27\times10^{20}\ \text{W}/\text{cm}^2.Comment: 5 pages, 4 figure

    Thermal conductivity measurements of proton-heated warm dense aluminum.

    Get PDF
    Thermal conductivity is one of the most crucial physical properties of matter when it comes to understanding heat transport, hydrodynamic evolution, and energy balance in systems ranging from astrophysical objects to fusion plasmas. In the warm dense matter regime, experimental data are very scarce so that many theoretical models remain untested. Here we present the first thermal conductivity measurements of aluminum at 0.5-2.7 g/cc and 2-10 eV, using a recently developed platform of differential heating. A temperature gradient is induced in a Au/Al dual-layer target by proton heating, and subsequent heat flow from the hotter Au to the Al rear surface is detected by two simultaneous time-resolved diagnostics. A systematic data set allows for constraining both thermal conductivity and equation-of-state models. Simulations using Purgatorio model or Sesame S27314 for Al thermal conductivity and LEOS for Au/Al release equation-of-state show good agreement with data after 15 ps. Discrepancy still exists at early time 0-15 ps, likely due to non-equilibrium conditions

    Anomalous material-dependent transport of focused, laser-driven proton beams.

    Get PDF
    Intense lasers can accelerate protons in sufficient numbers and energy that the resulting beam can heat materials to exotic warm (10 s of eV temperature) states. Here we show with experimental data that a laser-driven proton beam focused onto a target heated it in a localized spot with size strongly dependent upon material and as small as 35 μm radius. Simulations indicate that cold stopping power values cannot model the intense proton beam transport in solid targets well enough to match the large differences observed. In the experiment a 74 J, 670 fs laser drove a focusing proton beam that transported through different thicknesses of solid Mylar, Al, Cu or Au, eventually heating a rear, thin, Au witness layer. The XUV emission seen from the rear of the Au indicated a clear dependence of proton beam transport upon atomic number, Z, of the transport layer: a larger and brighter emission spot was measured after proton transport through the lower Z foils even with equal mass density for supposed equivalent proton stopping range. Beam transport dynamics pertaining to the observed heated spot were investigated numerically with a particle-in-cell (PIC) code. In simulations protons moving through an Al transport layer result in higher Au temperature responsible for higher Au radiant emittance compared to a Cu transport case. The inferred finding that proton stopping varies with temperature in different materials, considerably changing the beam heating profile, can guide applications seeking to controllably heat targets with intense proton beams

    A Bright Spatially-Coherent Compact X-ray Synchrotron Source

    Full text link
    Each successive generation of x-ray machines has opened up new frontiers in science, such as the first radiographs and the determination of the structure of DNA. State-of-the-art x-ray sources can now produce coherent high brightness keV x-rays and promise a new revolution in imaging complex systems on nanometre and femtosecond scales. Despite the demand, only a few dedicated synchrotron facilities exist worldwide, partially due the size and cost of conventional (accelerator) technology. Here we demonstrate the use of a recently developed compact laser-plasma accelerator to produce a well-collimated, spatially-coherent, intrinsically ultrafast source of hard x-rays. This method reduces the size of the synchrotron source from the tens of metres to centimetre scale, accelerating and wiggling a high electron charge simultaneously. This leads to a narrow-energy spread electron beam and x-ray source that is >1000 times brighter than previously reported plasma wiggler and thus has the potential to facilitate a myriad of uses across the whole spectrum of light-source applications.Comment: 5 pages, 4 figure

    Heavy ion acceleration in the radiation pressure acceleration and breakout afterburner regimes

    Get PDF
    We present a theoretical study of heavy ion acceleration from ultrathin (20 nm) gold foil irradiated by high-intensity sub-picosecond lasers. Using two-dimensional particle-in-cell simulations, three laser systems are modeled that cover the range between femtosecond and picosecond pulses. By varying the laser pulse duration we observe a transition from radiation pressure acceleration (RPA) to the relativistic induced transparency (RIT) regime for heavy ions akin to light ions. The underlying physics of beam formation and acceleration is similar for light and heavy ions, however, nuances of the acceleration process make the heavy ions more challenging. A more detailed study involving variation of peak laser intensity I-0 and pulse duration tau(FWHM) revealed that the transition point from RPA to RIT regime depends on the peak laser intensity on target and occurs for pulse duration tau(RPA -> RIT)(FWHM) [fs] congruent to 210/root I-0 [W cm (2)]/10(21) The most abundant gold ion and charge-to-mass ratio are Au51+ and q/M approximate to 1/4, respectively, half that of light ions. For ultrathin foils, on the order of one skin depth, we established a linear scaling of the maximum energy per nucleon (E/M)(max) with (q/M)(max), which is more favorable than the quadratic one found previously. The numerical simulations predict heavy ion beams with very attractive properties for applications: high directionality (10(11) ions sr(-1)) and energy (>20 MeV/nucleon) from laser systems delivering >20 J of energy on target
    • …
    corecore