6 research outputs found

    The Effect of Feedback on Resistance Training Performance and Adaptations: A Systematic Review and Meta-analysis

    Get PDF
    Background Augmented feedback is often used during resistance training to enhance acute physical performance and has shown promise as a method of improving chronic physical adaptation. However, there are inconsistencies in the scientific literature regarding the magnitude of the acute and chronic responses to feedback and the optimal method with which it is provided. Objective This systematic review and meta-analysis aimed to (1) establish the evidence for the effects of feedback on acute resistance training performance and chronic training adaptations; (2) quantify the effects of feedback on acute kinematic outcomes and changes in physical adaptations; and (3) assess the effects of moderating factors on the influence of feedback during resistance training. Methods Twenty studies were included in this systematic review and meta-analysis. This review was performed using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Four databases were searched, and studies were included if they were peer-reviewed investigations, written in English, and involved the provision of feedback during or following dynamic resistance exercise. Furthermore, studies must have evaluated either acute training performance or chronic physical adaptations. Risk of bias was assessed using a modified Downs and Black assessment tool. Multilevel meta-analyses were performed to quantify the effects of feedback on acute and chronic training outcomes. Results Feedback enhanced acute kinetic and kinematic outputs, muscular endurance, motivation, competitiveness, and perceived effort, while greater improvements in speed, strength, jump performance, and technical competency were reported when feedback was provided chronically. Furthermore, greater frequencies of feedback (e.g., following every repetition) were found to be most beneficial for enhancing acute performance. Results demonstrated that feedback improves acute barbell velocities by approximately 8.4% (g = 0.63, 95% confidence interval [CI] 0.36–0.90). Moderator analysis revealed that both verbal (g = 0.47, 95% CI 0.22–0.71) and visual feedback (g = 1.11, 95% CI 0.61–1.61) were superior to no feedback, but visual feedback was superior to verbal feedback. For chronic outcomes, jump performance might have been positively influenced (g = 0.39, 95% CI − 0.20 to 0.99) and short sprint performance was likely enhanced (g = 0.47, 95% CI 0.10–0.84) to a greater extent when feedback is provided throughout a training cycle. Conclusions Feedback during resistance training can lead to enhanced acute performance within a training session and greater chronic adaptations. Studies included in our analysis demonstrated a positive influence of feedback, with all outcomes showing superior results than when no feedback is provided. For practitioners, it is recommended that high-frequency, visual feedback is consistently provided to individuals when they complete resistance training, and this may be particularly useful during periods of low motivation or when greater competitiveness is beneficial. Alternatively, researchers must be aware of the ergogenic effects of feedback on acute and chronic responses and ensure that feedback is standardised when investigating resistance training

    Behavioral and Neuroimaging Research on Developmental Coordination Disorder (DCD): A Combined Systematic Review and Meta-Analysis of Recent Findings

    Get PDF
    Data Availability Statement: The original contributions presented in the study are included in the article/Supplementary Material, further inquiries can be directed to the corresponding author/s. Supplementary Material: The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fpsyg.2022.809455/full#supplementary-materialAim: The neurocognitive basis of Developmental Coordination Disorder (DCD; or motor clumsiness) remains an issue of continued debate. This combined systematic review and meta-analysis provides a synthesis of recent experimental studies on the motor control, cognitive, and neural underpinnings of DCD. Methods: The review included all published work conducted since September 2016 and up to April 2021. One-hundred papers with a DCD-Control comparison were included, with 1,374 effect sizes entered into a multi-level meta-analysis. Results: The most profound deficits were shown in: voluntary gaze control during movement; cognitive-motor integration; practice-/context-dependent motor learning; internal modeling; more variable movement kinematics/kinetics; larger safety margins when locomoting, and atypical neural structure and function across sensori-motor and prefrontal regions. Interpretation: Taken together, these results on DCD suggest fundamental deficits in visual-motor mapping and cognitive-motor integration, and abnormal maturation of motor networks, but also areas of pragmatic compensation for motor control deficits. Implications for current theory, future research, and evidence-based practice are discussed. Systematic Review Registration: PROSPERO, identifier: CRD42020185444.Australian Government Research Training Program Scholarship; Research Centre scheme, Australian Catholic University; Czech Science Foundation (GACR EXPRO scheme: 21-15728X); Knut and Alice Wallenberg Foundation (KAW 2020.0200).https://www.frontiersin.org/articles/10.3389/fpsyg.2022.809455/full#supplementary-materia
    corecore