174 research outputs found

    Double deficiency of toll-like receptors 2 and 4 alters long-term neurological sequelae in mice cured of pneumococcal meningitis

    Get PDF
    Toll-like receptor (TLR) 2 and 4 signalling pathways are central to the body's defence against invading pathogens during pneumococcal meningitis. Whereas several studies support their importance in innate immunity, thereby preventing host mortality, any role in protecting neurological function during meningeal infection is ill-understood. Here we investigated both the acute immunological reaction and the long-term neurobehavioural consequences of experimental pneumococcal meningitis in mice lacking both TLR2 and TLR4. The absence of these TLRs significantly impaired survival in mice inoculated intracerebroventricularly with Streptococcus pneumoniae. During the acute phase of infection, TLR2/4-deficient mice had lower cerebrospinal fluid concentrations of interleukin-1 beta, and higher interferon-gamma, than their wild-type counterparts. After antibiotic cure, TLR2/4 double deficiency was associated with aggravation of behavioural impairment in mice, as shown by diurnal hypolocomotion throughout the adaptation phases in the Intellicage of TLR-deficient mice compared to their wild-type counterparts. While TLR2/4 double deficiency did not affect the cognitive ability of mice in a patrolling task, it aggravated the impairment of cognitive flexibility. We conclude that TLR2 and TLR4 are central to regulating the host inflammatory response in pneumococcal meningitis, which may mediate diverse compensatory mechanisms that protect the host not only against mortality but also long-term neurological complications

    Adolescent Oxytocin Exposure Causes Persistent Reductions in Anxiety and Alcohol Consumption and Enhances Sociability in Rats

    Get PDF
    Previous studies have suggested that administration of oxytocin (OT) can have modulatory effects on social and anxiety-like behavior in mammals that may endure beyond the time of acute OT administration. The current study examined whether repeated administration of OT to male Wistar rats (n = 48) during a key developmental epoch (early adolescence) altered their physiology and behavior in later-life. Group housed rats were given intraperitoneal injections of either 1 mg/kg OT or vehicle during early adolescence (post natal-days [PND] 33–42). OT treatment caused a transient inhibition of body weight gain that recovered quickly after the cessation of treatment. At PND 50, the rats pre-treated with OT displayed less anxiety-like behavior on the emergence test, while at PND 55 they showed greater levels of social interaction. A subgroup of OT pre-treated rats examined at PND 63 showed a strong trend towards increased plasma OT levels, and also displayed significantly increased OT receptor mRNA in the hypothalamus. Rats pre-treated with OT and their controls showed similar induction of beer intake in daily 70 min test sessions (PND 63 onwards) in which the alcohol concentration of beer was gradually increased across days from 0.44% to 4.44%. However, when given ad libitum access to beer in their home cages from PND 72 onwards (early adulthood), consumption of beer but not water was significantly less in the OT pre-treated rats. A “booster” shot of OT (1 mg/kg) given after 25 days of ad libitum access to beer had a strong acute inhibitory effect on beer intake without affecting water intake. Overall these results suggest that exogenous OT administered during adolescence can have subtle yet enduring effects on anxiety, sociability and the motivation to consume alcohol. Such effects may reflect the inherent neuroplasticity of brain OT systems and a feed-forward effect whereby exogenous OT upregulates endogenous OT systems

    CUMYL-4CN-BINACA Is an Efficacious and Potent Pro-Convulsant Synthetic Cannabinoid Receptor Agonist

    Get PDF
    Synthetic cannabinoid receptor agonists (SCRAs) are the largest class of new psychoactive substances (NPS). New examples are detected constantly, and some are associated with a series of adverse effects, including seizures. CUMYL-4CN-BINACA (1-(4-cyanobutyl)-N-(2-phenylpropan-2-yl)indazole-3-carboxamide) is structurally related to potent, cumylamine-derived SCRAs such as 5F-CUMYL-PINACA, but is unusual due to a terminal aliphatic nitrile group not frequently encountered in SCRAs or pharmaceuticals. We report here that CUMYL-4CN-BINACA is a potent CB1 receptor agonist (Ki = 2.6 nM; EC50 = 0.58 nM) that produces pro-convulsant effects in mice at a lower dose than reported for any SCRA to date (0.3 mg/kg, i.p). Hypothermic and pro-convulsant effects in mice could be reduced or blocked, respectively, by pretreatment with CB1 receptor antagonist SR141716, pointing to at least partial involvement of CB1 receptors in vivo. Pretreatment with CB2 receptor antagonist AM-630 had no effect on pro-convulsant activity. The pro-convulsant properties and potency of CUMYL-4CN-BINACA may underpin the toxicity associated with this compound in humans

    Distinct neurobehavioural effects of cannabidiol in transmembrane domain neuregulin 1 mutant mice

    Get PDF
    The cannabis constituent cannabidiol (CBD) possesses anxiolytic and antipsychotic properties. We have previously shown that transmembrane domain neuregulin 1 mutant (Nrg1 TM HET) mice display altered neurobehavioural responses to the main psychoactive constituent of cannabis, D9-tetrahydrocannabinol. Here we investigated whether Nrg1 TM HET mice respond differently to CBD and whether CBD reverses schizophrenia-related phenotypes expressed by these mice. Adult male Nrg1 TM HET and wild type-like littermates (WT) received vehicle or CBD (1, 50 or 100 mg/kg i.p.) for 21 days. During treatment and 48 h after withdrawal we measured behaviour, whole blood CBD concentrations and autoradiographic receptor binding. Nrg1 HET mice displayed locomotor hyperactivity, PPI deficits and reduced 5-HT2A receptor binding density in the substantia nigra, but these phenotypes were not reversed by CBD. However, long-term CBD (50 and 100 mg/ kg) selectively enhanced social interaction in Nrg1 TM HET mice. Furthermore, acute CBD (100 mg/kg) selectively increased PPI in Nrg1 TM HET mice, although tolerance to this effect was manifest upon repeated CBD administration. Long-term CBD (50 mg/kg) also selectively increased GABAA receptor binding in the granular retrosplenial cortex in Nrg1 TM HET mice and reduced 5-HT2A binding in the substantia nigra in WT mice. Nrg1 appears necessary for CBD-induced anxiolysis since only WT mice developed decreased anxiety-related behaviour with repeated CBD treatment. Altered pharmacokinetics in mutant mice could not explain our findings since no genotype differences existed in CBD blood concentrations. Here we demonstrate that Nrg1 modulates acute and long-term neurobehavioural effects of CBD, which does not reverse the schizophrenia-relevant phenotypes

    The Effect of Cannabidiol on Subjective Responses to Endurance Exercise: A Randomised Controlled Trial

    Get PDF
    BACKGROUND: Exercise is known to improve health. However, it can be unpleasant, often inducing negative feelings, or 'affect'. Cannabidiol (CBD), a non-intoxicating constituent of the cannabis plant, has been reported to enhance the subjective experience of exercise; specifically, in trained individuals performing fixed-intensity endurance activity. Here, we investigated the effects of CBD on subjective responses to exercise under more ecologically valid conditions; namely, in recreationally active individuals performing self-paced endurance activity.METHODS: A randomised, double-blind, placebo-controlled, crossover trial was conducted at Griffith University between July 17 and August 28, 2023. Griffith University students studying sports nutrition were invited to take part, with eligible volunteers ≥ 18 years of age and able to perform endurance exercise. Participants ingested placebo or 150 mg CBD in two soft-gel capsules 90 min before completing a self-paced 25-lap (10 km) run around an outdoor athletics track (400 m, synthetic). The primary outcomes were affective valence during exercise, assessed on completion of laps 6, 12, 18 and 24 using the 'Feelings Scale', and positive and negative affect, assessed at baseline, pre-run and post-run using the 'Positive and Negative Affect Schedule'. Exercise enjoyment, motivation and self-efficacy, the core features of the 'runner's high' (i.e., euphoria, pain, anxiety, sedation), perceived exertion and run time were also assessed.RESULTS: Fifty-two participants were randomised and 51 were included in the final sample (n = 22 female; 22 [21-25] years). Exercise induced negative affect (i.e., at the time of undertaking) and increased pain. CBD did not counteract either response. In fact, CBD had no significant effects on any of the outcomes measured. In contrast, exercise, once completed, increased positive affect, and decreased negative affect and anxiety.CONCLUSIONS: CBD (150 mg, oral) does not appear to enhance the subjective experience of self-paced endurance exercise in recreationally active individuals. Nor, however, does it appear to compromise it. These findings suggest that CBD use is safe under exercise conditions and unlikely to impede physical activity participation. Our study also reaffirms the powerful mood-enhancing effects of exercise.TRIAL REGISTRATION: Registered with the Australian New Zealand Clinical Trials Registry ( www.anzctr.org.au ) on May 31, 2023 (Trial ID: ACTRN12623000593639).</p

    Parameters That Affect Fear Responses in Rodents and How to Use Them for Management

    Get PDF
    The strong innate fear response shown by laboratory rodents to predator cues could provide powerful and innovative tools for pest management. Predator cues are routinely used to induce fear and anxiety in laboratory rodents for pharmacological studies. However, research on the fear response induced by predator cues in different species of rodents in the wild has been inconclusive with results often contradictory to laboratory experiments. Potential explanations for this inconsistency include the prey's: (i) physiological state; (ii) parasite load; (iii) differential intensity of perceived threats; (iv) fear learning and habituation; and (v) information gathering. In this review, we first explore current knowledge on the sensory mechanisms and capabilities of rodents, followed by the discussion of each of these explanations within the context of their implications for the use of antipredator response as a pest rodent management tool. Finally, we make recommendations on potential solutions and strategies to resolve issues in rodent management related to these hypotheses

    Novel molecular changes induced by Nrg1 hypomorphism and Nrg1-cannabinoid interaction in adolescence : a hippocampal proteomic study in mice

    Get PDF
    Neuregulin 1 (NRG1) is linked to an increased risk of developing schizophrenia and cannabis dependence. Mice that are hypomorphic for Nrg1 (Nrg1 HET mice) display schizophrenia relevant behavioural phenotypes and aberrant expression of serotonin and glutamate receptors. Nrg1 HET mice also display idiosyncratic responses to the main psychoactive constituent of cannabis, Δ9 -tetrahydrocannabinol (THC). To gain traction on the molecular pathways disrupted by Nrg1 hypomorphism and Nrg1-cannabinoid interactions we conducted a proteomic study. Adolescent wildtype (WT) and Nrg1 HET mice were exposed to repeated injections of vehicle or THC and their hippocampi were submitted to 2D gel proteomics. Comparison of WT and Nrg1 HET mice identified proteins linked to molecular changes in schizophrenia that have not been previously associated with Nrg1. These proteins are involved in vesicular release of neurotransmitters such as SNARE proteins; enzymes impacting serotonergic neurotransmission, and; proteins affecting growth factor expression. Nrg1 HET mice treated with THC expressed a distinct protein expression signature compared to WT mice. Replicating prior findings, THC caused proteomic changes in WT mice suggestive of greater oxidative stress and neurodegeneration. We have previously observed that THC selectively increased hippocampal NMDA receptor binding of adolescent Nrg1 HET mice. Here we observed outcomes consistent with heightened NMDA-mediated glutamatergic neurotransmission. This included differential expression of proteins involved in NMDA receptor trafficking to the synaptic membrane; lipid raft stabilization of synaptic NMDA receptors; and homeostatic responses to dampen excitotoxicity. These findings uncover for the first time novel proteins altered in response to Nrg1 hypomorphism and Nrg1-cannabinoid interactions that improves our molecular understanding of Nrg1 signaling and Nrg1-mediated genetic vulnerability to the neurobehavioural effects of cannabinoids

    Effects of Cannabidiol on exercise physiology and bioenergetics : a randomised controlled pilot trial

    Get PDF
    Background: Cannabidiol (CBD) has demonstrated anti-inflammatory, analgesic, anxiolytic and neuroprotective effects that have the potential to benefit athletes. This pilot study investigated the effects of acute, oral CBD treatment on physiological and psychological responses to aerobic exercise to determine its practical utility within the sporting context. Methods: On two occasions, nine endurance-trained males (mean±SD V̇O2max: 57.4±4.0 mL·min−1 ·kg−1 ) ran for 60 min at a fixed intensity (70% V̇O2max) (RUN 1) before completing an incremental run to exhaustion (RUN 2). Participants received CBD (300 mg; oral) or placebo 1.5 h before exercise in a randomised, double-blind design. Respiratory gases (V̇O2), respiratory exchange ratio (RER), heart rate (HR), blood glucose (BG) and lactate (BL) concentrations, and ratings of perceived exertion (RPE) and pleasure–displeasure were measured at three timepoints (T1–3) during RUN 1. V̇O2max, RERmax, HRmax and time to exhaustion (TTE) were recorded during RUN 2. Venous blood was drawn at Baseline, Pre- and Post-RUN 1, Post-RUN 2 and 1 h Post-RUN 2. Data were synthesised using Cohen’s dz effect sizes and 85% confidence intervals (CIs). Effects were considered worthy of further investigation if the 85% CI included±0.5 but not zero. Results: CBD appeared to increase V̇O2 (T2:+38±48 mL·min−1, dz: 0.25–1.35), ratings of pleasure (T1:+0.7±0.9, dz: 0.22–1.32; T2:+0.8±1.1, dz: 0.17–1.25) and BL (T2:+3.3±6.4 mmol·L−1, dz:>0.00–1.03) during RUN 1 compared to placebo. No differences in HR, RPE, BG or RER were observed between treatments. CBD appeared to increase V̇O2max (+119±206 mL·min−1, dz: 0.06–1.10) and RERmax (+0.04±0.05 dz: 0.24–1.34) during RUN 2 compared to placebo. No differences in TTE or HRmax were observed between treatments. Exercise increased serum interleukin (IL)-6, IL-1β, tumour necrosis factor-α, lipopolysaccharide and myoglobin concentrations (i.e. Baseline vs. Post-RUN 1, Post-RUN 2 and/or 1-h Post-RUN 2, p’s<0.05). However, the changes were small, making it difficult to reliably evaluate the effect of CBD, where an effect appeared to be present. Plasma concentrations of the endogenous cannabinoid, anandamide (AEA), increased Post-RUN 1 and Post-RUN 2, relative to Baseline and Pre-RUN 1 (p’s<0.05). CBD appeared to reduce AEA concentrations Post-RUN 2, compared to placebo (−0.95±0.64 pmol·mL−1, dz: −2.19, −0.79). Conclusion: CBD appears to alter some key physiological and psychological responses to aerobic exercise without impairing performance. Larger studies are required to confirm and better understand these preliminary findings

    Cannabigerolic acid, a major biosynthetic precursor molecule in cannabis, exhibits divergent effects on seizures in mouse models of epilepsy

    Get PDF
    Background and Purpose: Cannabis has been used to treat epilepsy for millennia, with such use validated by regulatory approval of cannabidiol (CBD) for Dravet syndrome. Unregulated artisanal cannabis-based products used to treat children with intractable epilepsies often contain relatively low doses of CBD but are enriched in other phytocannabinoids. This raises the possibility that other cannabis constituents might have anticonvulsant properties. Experimental Approach: We used the Scn1a+/− mouse model of Dravet syndrome to investigate the cannabis plant for phytocannabinoids with anticonvulsant effects against hyperthermia-induced seizures. The most promising, cannabigerolic acid (CBGA), was further examined against spontaneous seizures and survival in Scn1a+/− mice and in electroshock seizure models. Pharmacological effects of CBGA were surveyed across multiple drug targets. Key Results: The initial screen identified three phytocannabinoids with novel anticonvulsant properties: CBGA, cannabidivarinic acid (CBDVA) and cannabigerovarinic acid (CBGVA). CBGA was most potent and potentiated the anticonvulsant effects of clobazam against hyperthermia-induced and spontaneous seizures, and was anticonvulsant in the MES threshold test. However, CBGA was proconvulsant in the 6-Hz threshold test and a high dose increased spontaneous seizure frequency in Scn1a+/− mice. CBGA was found to interact with numerous epilepsy-relevant targets including GPR55, TRPV1 channels and GABAA receptors. Conclusion and Implications: These results suggest that CBGA, CBDVA and CBGVA may contribute to the effects of cannabis-based products in childhood epilepsy. Although these phytocannabinoids have anticonvulsant potential and could be lead compounds for drug development programmes, several liabilities would need to be overcome before CBD is superseded by another in this class

    Oral cannabinoid-rich THC/CBD cannabis extract for secondary prevention of chemotherapy-induced nausea and vomiting : a study protocol for a pilot and definitive randomised double-blind placebo-controlled trial (CannabisCINV)

    Get PDF
    INTRODUCTION: Chemotherapy-induced nausea and vomiting (CINV) remains an important issue for patients receiving chemotherapy despite guideline-consistent antiemetic therapy. Trials using delta-9-tetrahydrocannabinol-rich (THC) products demonstrate limited antiemetic effect, significant adverse events and flawed study design. Trials using cannabidiol-rich (CBD) products demonstrate improved efficacy and psychological adverse event profile. No definitive trials have been conducted to support the use of cannabinoids for this indication, nor has the potential economic impact of incorporating such regimens into the Australian healthcare system been established. CannabisCINV aims to assess the efficacy, safety and cost-effectiveness of adding TN-TC11M, an oral THC/CBD extract to guideline-consistent antiemetics in the secondary prevention of CINV. METHODS AND ANALYSIS: The current multicentre, 1:1 randomised cross-over, placebo-controlled pilot study will recruit 80 adult patients with any malignancy, experiencing CINV during moderate to highly emetogenic chemotherapy despite guideline-consistent antiemetics. Patients receive oral TN-TC11M (THC 2.5mg/CBD 2.5 mg) capsules or placebo capsules three times a day on day -1 to day 5 of cycle A of chemotherapy, followed by the alternative drug regimen during cycle B of chemotherapy and the preferred drug regimen during cycle C. The primary endpoint is the proportion of subjects attaining a complete response to CINV. Secondary and tertiary endpoints include regimen tolerability, impact on quality of life and health system resource use. The primary assessment tool is patient diaries, which are filled from day -1 to day 5. A subsequent randomised placebo-controlled parallel phase III trial will recruit a further 250 patients. ETHICS AND DISSEMINATION: The protocol was approved by ethics review committees for all participating sites. Results will be disseminated in peer-reviewed journals and at scientific conferences.Tilray. PROTOCOL VERSION: 2.0, 9 June 2017
    corecore