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previously shown that transmembrane domain neuregulin 1 mutant (Nrg1 TM HET) mice display altered 
neurobehavioural responses to the main psychoactive constituent of cannabis, D9-tetrahydrocannabinol. 
Here we investigated whether Nrg1 TM HET mice respond differently to CBD and whether CBD reverses 
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Furthermore, acute CBD (100 mg/kg) selectively increased PPI in Nrg1 TM HET mice, although tolerance 
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5-HT2A binding in the substantia nigra in WT mice. Nrg1 appears necessary for CBD-induced anxiolysis 
since only WT mice developed decreased anxiety-related behaviour with repeated CBD treatment. Altered 
pharmacokinetics in mutant mice could not explain our findings since no genotype differences existed in 
CBD blood concentrations. Here we demonstrate that Nrg1 modulates acute and long-term 
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Abstract

The cannabis constituent cannabidiol (CBD) possesses anxiolytic and antipsychotic properties. We have previously shown
that transmembrane domain neuregulin 1 mutant (Nrg1 TM HET) mice display altered neurobehavioural responses to the
main psychoactive constituent of cannabis, D9-tetrahydrocannabinol. Here we investigated whether Nrg1 TM HET mice
respond differently to CBD and whether CBD reverses schizophrenia-related phenotypes expressed by these mice. Adult
male Nrg1 TM HET and wild type-like littermates (WT) received vehicle or CBD (1, 50 or 100 mg/kg i.p.) for 21 days. During
treatment and 48 h after withdrawal we measured behaviour, whole blood CBD concentrations and autoradiographic
receptor binding. Nrg1 HET mice displayed locomotor hyperactivity, PPI deficits and reduced 5-HT2A receptor binding
density in the substantia nigra, but these phenotypes were not reversed by CBD. However, long-term CBD (50 and 100 mg/
kg) selectively enhanced social interaction in Nrg1 TM HET mice. Furthermore, acute CBD (100 mg/kg) selectively increased
PPI in Nrg1 TM HET mice, although tolerance to this effect was manifest upon repeated CBD administration. Long-term CBD
(50 mg/kg) also selectively increased GABAA receptor binding in the granular retrosplenial cortex in Nrg1 TM HET mice and
reduced 5-HT2A binding in the substantia nigra in WT mice. Nrg1 appears necessary for CBD-induced anxiolysis since only
WT mice developed decreased anxiety-related behaviour with repeated CBD treatment. Altered pharmacokinetics in mutant
mice could not explain our findings since no genotype differences existed in CBD blood concentrations. Here we
demonstrate that Nrg1 modulates acute and long-term neurobehavioural effects of CBD, which does not reverse the
schizophrenia-relevant phenotypes.
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Introduction

Cannabis abuse is linked with a moderate increase in the risk of

developing schizophrenia [1] although this relationship has been

discussed controversially in the field [2–5]. The association of a

catechol-O-methyltransferase gene polymorphism with increased

psychotic symptom occurrence after adolescent cannabis use [6]

suggests that the extent and nature of the schizophrenia-relevant

behavioural effects of cannabis may have a genetic underpinning.

D9-tetrahydrocannabinol (THC) is the most abundant of the .70

cannabis constituents and is responsible for the euphoric and

psychotomimetic effects of cannabis. Cannabidiol (CBD) is

another major cannabis constituent present in lower abundance

than THC in most cannabis samples [7] that is not psychotropic

and ameliorates some of the unpleasant psychoactive effects of

THC [8,9]. Therapeutic potential for CBD in treating psychiatric

disorders is suggested by reports of its antidepressant [10,11],

anxiolytic- [12,13] and antipsychotic-like effects [12–16] in rodent

models. CBD also produces anxiolytic effects in healthy volunteers

and those suffering from social anxiety disorders [17–19] and some

antipsychotic-like effects in schizophrenia patients [20]. While the

actions of CBD are not fully understood, it has a multitude of

pharmacological effects such as antagonising the effects of

cannabinoid receptor agonists [21,22], behaving as an inverse

agonist at cannabinoid CB2 receptors [22], blocking the orphan

receptor GPR55 [23], inhibiting fatty acid amide hydrolase, and

activating transient receptor potential vanilloid type 1 channels

[24].

We have investigated the effects of cannabis constituents in the

transmembrane domain neuregulin 1 heterozygous mutant (Nrg1

TM HET) mouse, a model for a schizophrenia susceptibility gene

that offers partial construct, predictive and face validity for

schizophrenia. These mice show age-dependent locomotor and

exploratory hyperactivity [25] [reversible with clozapine [26]],

impaired preference for social novelty [27] and cognitive deficits

(e.g. contextual fear conditioning [28]). Furthermore, Nrg1 TM

HET mice show altered susceptibility to the neurobehavioural

effects of THC [29–32]. Here, we aimed to assess the effect of

PLoS ONE | www.plosone.org 1 April 2012 | Volume 7 | Issue 4 | e34129



CBD on behaviour and receptor binding profiles in these mice.

We hypothesised that CBD treatment would attenuate the

hyperlocomotor activity of Nrg1 mutant mice, which is relevant

to the psychomotor agitation observed in the ‘positive’ signs of

schizophrenia [33]. Furthermore, we hypothesised that mutant

and wild type-like (WT) controls would show differential sensitivity

to CBD in a battery of tests relevant to schizophrenia [33] and that

these behavioural effects would be accompanied by changes in

receptor binding density of neurotransmitter systems known to be

involved in these behavioural domains. Our study demonstrates

that Nrg1 modulates acute and long-term neurobehavioural effects

of CBD, which does not reverse the schizophrenia-relevant

phenotypes.

Results

At the start of the study Nrg1 TM HET mice weighed

significantly less than their WT littermates [Nrg1 TM

HET=27.460.3 g versus WT=28.560.2 g; t(1,125) = 3.1,

P,0.01] and this difference continued throughout the testing

period. Importantly, there was no effect of CBD treatment on

body weight development (data not shown). Also, there were no

overt signs of CBD treatment, such as on general home cage

activity levels, responsiveness to touch or piloerection.

Behavioural effects of acute CBD exposure
Locomotion and exploration. The well-established

hyperlocomotor phenotype of Nrg1 mutant mice was evident on

the first test day as measured in the OF [day 1: F(1,117) = 11.3,

P=0.001; Fig. 1A]. Further analyses for the different treatment

groups revealed that this increase in motor activity of mutant mice

was only significant in animals treated with 1 mg/kg CBD, not in

those treated with 50 or 100 mg/kg CBD (Fig. 1A). However,

there was no significant genotype by treatment interaction. Nrg1

TM HET mice were also more explorative (i.e. vertical activity)

than their WT littermates in the OF [day 1: F(1,114) = 7.6,

P,0.01; three mice excluded due to equipment malfunction;

Fig. 1B]. More specifically, OF exploration of mutant mice was

significantly increased in animals treated with an acute dose of

50 mg/kg CBD (Fig. 1D).

Anxiety. Anxiety parameters investigated in the OF (i.e. time

spent in the centre and distance ratio) on day 1 were similar for

both genotypes and were not affected by CBD treatment

(Fig. 2A+D). However, as published previously, Nrg1 TM HET

mice displayed an anxiolytic-like phenotype in the LD test

(Fig. 3A+D). Time spent in the light compartment of the LD

test was elevated in mutant mice on day 1 [F(1,117) = 9.0, P,0.01]

compared with control mice. This anxiolytic-like phenotype was

statistically confirmed for vehicle-treated mutants and mutants

treated with 100 mg/kg CBD (Fig. 3A). Furthermore, Nrg1mutant

mice displayed an increase in distance ratio in the more aversive

light compartment on test day 1 [F(1,115) = 6.6, P,0.05; two

animals excluded due to equipment malfunction; Fig. 3D]. This

genotype difference was only significant in the group of animals

being treated with the highest dose of CBD (Fig. 3D). CBD had no

impact on anxiety-related measures of the LD test across

genotypes.

Sensorimotor gating. CBD treatment increased the mean

startle response on day 1 [F(3,113) = 11.1, P,0.001]. This effect of

CBD was evident at a dose of 100 mg/kg in both genotypes

(Table 1). As expected, three-way RM ANOVA for ‘prepulse

intensity’ confirmed that % PPI increased with increasing prepulse

intensity on day 1 [F(2,226) = 432.8, P,0.001; Fig. 4A]. Acute

CBD had a stimulating effect on % PPI of mice [F(3,113) = 4.7,

P,0.01]. Specifically, CBD 100 mg/kg increased PPI in Nrg1 TM

HET mice at the 86 dB prepulse intensity compared with vehicle-

treated mutant mice (Fig. 4A).

Behavioural effects of long-term CBD exposure
Locomotion and exploration. Hyperlocomotion of Nrg1

mutant mice was evident on test day 13 [F(1,114) = 18.3, P,0.001;

Fig. 1B]. This genotype effect was significant in animals treated

with vehicle or 1 mg/kg CBD but not in those treated with 50 or

100 mg/kg CBD (Fig. 1B). No interactions were detected.

Furthermore, mutant mice exhibited an overall explorative-like

phenotype in the OF [F(1,111) = 9.3, P,0.01; three mice excluded

due to equipment malfunction], although this increase in

exploration failed to reach significance in any particular

treatment group (Fig. 1E).

Anxiety. CBD developed an anxiolytic-like effect in WT mice

by day 13 [F(3,114) = 3.6, P,0.05], as indicated by an increase in

OF distance ratio for the 1 mg/kg and 100 mg/kg treatment

groups (Fig. 2E). No genotype-dependent effects were observed in

the OF on this test day. Nrg1 mutant mice displayed an increase in

distance ratio in the more aversive light compartment of the LD

test on test day 15 [F(1,103) = 7.5, P,0.05; eleven mice excluded

due to equipment malfunction] but only in those mutant mice that

had been treated with 100 mg/kg CBD (Fig. 3E). CBD had no

impact on anxiety-related measures of the LD test across

genotypes.

Social interaction. Social interaction data are presented in

Table 2. Overall, CBD treatment increased social interaction as

measured by total duration of active social interaction

[F(3,112) = 4.7, P,0.01]. Furthermore, CBD had a stimulating

effect on particular socio-positive behaviours in animals: nosing

[duration: F(3,112) = 3.6, P,0.05] and anogenital sniffing

[frequency: F(3,112) = 3.7, P,0.05 - duration: F(3,112) = 6.2,

P=0.001]. Treatment with 50 mg/kg CBD selectively increased

total active social interaction time, nosing (duration and frequency)

and anogenital sniffing frequency in Nrg1 TM HETs. Importantly,

CBD at a dose of 50 mg/kg had no concomitant effect on

locomotor activity (data not shown). Furthermore, 100 mg/kg

CBD increased the duration of anogenital sniffing in mutant mice.

Finally, Nrg1 TM HET mice displayed increased frequencies of

nosing [F(1,112) = 7.7, P,0.01]. This genotype effect was

significant in mutant animals treated with 1 mg/kg and 50 mg/

kg CBD.

Sensorimotor gating. Our analysis did not reveal any

significant effects of treatment or genotype on sensorimotor

gating. As expected, % PPI increased with increasing prepulse

intensity [day 21: F(2,220) = 532.9, P,0.001; Fig. 4B].

Behavioural effects of withholding CBD for 48 h
None of the test mice showed any drug withdrawal-like

symptoms (e.g. wet dog shakes [34]) during OF, LD or PPI

testing 48 h post final CBD treatment.

Locomotion and exploration. The hyperlocomotor

phenotype of Nrg1 mutants was still detectable in the OF on the

last experimental day [WH day: F (1,112) = 16.7, P,0.001]. This

increase in motor activity was significant for mutant mice of the

vehicle or 1 mg/kg CBD treatment groups (Fig. 1C). No

significant genotype by treatment interaction was found. Despite

an overall effect of genotype on exploration [WH day:

F(1,105) = 7.6, P,0.01; seven mice excluded due to equipment

malfunction], only vehicle-treated Nrg1 HET mice showed a

significantly increased frequency of vertical activity compared to

WT mice in the OF (Fig. 1F).

Effects of Cannabidiol in Nrg1 Mutant Mice
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Anxiety. Nrg1 TM HET mice were less anxious (i.e. increase

in distance ratio in the OF) compared with their WT littermates

on WH day [F(1,112) = 8.9, P,0.01]. This phenotype was only

significantly different between vehicle-treated animals of both

genotypes (Fig. 2F). This finding was confirmed in the LD test

(Fig. 3). Time spent in the light compartment of the LD test was

Figure 1. Horizontal locomotor and vertical activity (i.e. rearing) in the open field test (10 min) after injection of CBD. A–C: Overall
distance travelled and D–F: Rearing on days 1, 13 and treatment withheld (WH) day. Data represent mean+S.E.M. Significant one-way ANOVA (split by
‘treatment’) results are shown: * P,0.05, ** P,0.01 (vs. WT receiving corresponding treatment).
doi:10.1371/journal.pone.0034129.g001

Figure 2. Anxiety-related measures in the open field test (10 min) after injection of CBD. A–C: Time spent in the central area and D–F:
Distance ratio on days 1, 13 and treatment withheld (WH) day. Data represent mean+S.E.M. Significant one-way ANOVA (split by corresponding
factor) results are shown: # P,0.05 (vs. vehicle of corresponding genotype). ** P,0.01 (vs. WT receiving corresponding treatment).
doi:10.1371/journal.pone.0034129.g002

Effects of Cannabidiol in Nrg1 Mutant Mice
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increased in Nrg1 HET mice on WH day [F(1,112) = 7.5, P,0.01)

compared with control mice. This anxiolytic-like phenotype was

statistically confirmed for mutants treated with 100 mg/kg CBD

(Fig. 3C). In addition, Nrg1 mutant mice exhibited higher levels of

distance ratio in the light chamber of the LD test on WH day

[F(1,109) = 4.8, P,0.05; three mice excluded due to equipment

malfunction]. This genotype difference was only significant in the

group of animals being treated with the highest dose of CBD

(Fig. 3F). CBD had no impact on anxiety-related measures of the

LD test across genotypes.

Sensorimotor gating. We detected significant differences

between the ASR of WT and Nrg1 mutant mice on WH day

[F(1,111) = 8.3, P,0.01]. The startle response was reduced in Nrg1
TM HET mice treated with 1 mg/kg or 50 mg/kg CBD

compared with the corresponding WT groups (Table 1). As on

the other test days, % PPI was dependent on the prepulse intensity

[WH day: F(2,222) = 498.6, P,0.001; Fig. 4C]. Importantly, our

analyses detected a PPI deficit in mutant mice on WH day

[F(1,111) = 4.8, P,0.05], as % PPI was reduced in vehicle-treated

Nrg1HET mice compared with WT controls at prepulse intensities

of 82 dB and 86 dB (Fig. 4C).

CBD concentration in whole blood
GC-MS analysis of CBD in whole blood obtained from Nrg1

TM HET and WT mice immediately after the final behavioural

test, performed 48 h after treatment cessation (48 h after the final

of 21 CBD injections: WH day), is depicted in Figure 5. There was

no difference between mutant and WT mice in CBD blood

concentration, which increased in a dose-dependent manner in

both genotypes [F(2,26) = 11.5, P,0.001].

Effects of CBD on autoradiographic receptor binding
Representative autoradiograms for [3H]ketanserin and

[3H]muscimol binding in WT and Nrg1 TM HET mice are

depicted in Figure 6, and receptor binding data for all radioligands

Figure 3. Anxiety-related measures in the light-dark test (10 min) after injection of CBD. A–C: Time spent in the light compartment and
D–F: Distance ratio on days 1, 15 and treatment withheld (WH) day. Data represent means+S.E.M. Significant one-way ANOVA (split by ‘treatment’)
results are shown: * P,0.05, ** P,0.01 (vs. WT receiving corresponding treatment).
doi:10.1371/journal.pone.0034129.g003

Table 1. Startle response.

Day WT Nrg1 TM HET

Vehicle CBD 1 CBD 50 CBD 100 Vehicle CBD 1 CBD 50 CBD 100

1 48.864.9 56.067.7 51.864.9 81.266.8 ## 46.866.0 37.363.2 57.2610.0 78.868.2 ##

21 44.463.5 50.964.9 56.265.3 59.766.3 50.367.0 43.564.4 45.465.8 59.067.9

WH 52.864.1 54.265.3 50.865.4 46.363.9 47.267.3 39.763.6 * 34.964.7 * 40.465.9

Acute CBD (100 mg/kg) increases startle response [arbitrary units] to a 120 dB acoustic stimulus. Data represent means (6 S.E.M.). Significant one-way ANOVA (split by
corresponding factor) results are shown:
*P,0.05 (vs. WT receiving corresponding treatment);
##P,0.01 (vs. vehicle of corresponding genotype).
doi:10.1371/journal.pone.0034129.t001

Effects of Cannabidiol in Nrg1 Mutant Mice

PLoS ONE | www.plosone.org 4 April 2012 | Volume 7 | Issue 4 | e34129



48 h after treatment cessation are reported in Table 3. There were

no changes in CB1, 5-HT1A or NMDAR radioligand binding in

any brain region (Table 3).

5-HT2A binding in the substantia nigra was reduced in Nrg1 TM

HET mice compared with WT and this effect was dose-

dependent, as confirmed by an interaction of ‘genotype’ with

‘treatment’ [F(3,30) = 2.9, P,0.05]. Vehicle-treated Nrg1 mutants

had lower levels of 5-HT2A binding than WT animals.

Furthermore, 50 mg/kg CBD decreased specifically 5-HT2A

binding in WT mice with no such effect observed in mutant mice

(Table 3). There were no changes in 5-HT2A receptor binding in

any other region.

GABAA receptor binding was similar across genotypes.

However, a significant interaction of ‘genotype’ with ‘treatment’

for the granular retrosplenial cortex indicated, that treatment with

50 mg/kg CBD selectively increased GABAA receptor binding in

Nrg1 TM HET mice compared with vehicle controls [interaction:

F(3,31) = 3.0, P,0.05]. There were no CBD-induced changes in

GABAA receptor binding in any other region (Table 3).

Discussion

Here we report a range of behavioural effects of acute and

chronic CBD in wild type-like and Nrg1 TM HET mice. CBD had

no effect on locomotor activity, although the typical hyperloco-

motive phenotype of Nrg1 TM HET mutant mice was not present

after long-term treatment and withholding of CBD (50 and

100 mg/kg). CBD selectively exerted anxiolytic-like effects in WT

mice in the OF at both low (1 mg/kg) and high (100 mg/kg) doses.

In contrast, high doses of CBD (50 and 100 mg/kg) selectively

increased social interaction in Nrg1 TM HET mice. Acute

administration of high-dose CBD enhanced PPI, but tolerance

to this effect occurred such that PPI was no longer altered

following chronic CBD. Nrg1 TM HET mice showed decreased 5-

HT2A binding in the substantia nigra. CBD did not reverse this

change, but enhanced 5-HT2A binding in the substantia nigra in

WT mice and increased GABAA density in Nrg1 TM HET mice.

Behavioural effects of Nrg1 genotype and CBD treatment
Locomotion and exploration. The lack of effects of acute or

long-term CBD on locomotor or exploratory activity is consistent

with its negligible motor effects reported for C57BL/6JArc mice,

the same inbred mouse strain used as the background for our Nrg1

model [14]. Baseline locomotor hyperactivity and moderately

increased exploratory activity in the OF were evident in Nrg1 TM

HET mice on all three test days, as observed previously

[25,29,31]. This hyperactivity was retained in Nrg1 TM HET

mice treated with the lower dose of CBD (1 mg/kg), but Nrg1 TM

HET mice treated with 50 and 100 mg/kg CBD did not express

either locomotor hyperactivity nor increased rearing. Notably, this

absence of hyperactivity persisted 48 h after cessation of CBD

treatment. Repeated treatment with higher doses of CBD might

reduce the potential for the hyperlocomotor phenotype to emerge,

which would be in line with reports that acute CBD prevents

hyperactivity induced by pharmacological agents such as

dexamphetamine [13,14]. Unfortunately, the response of Nrg1

Table 2. Social interaction.

Parameter WT Nrg1 TM HET

Vehicle CBD 1 CBD 50 CBD 100 Vehicle CBD 1 CBD 50 CBD 100

Nosing [n] 40.762.4 41.562.4 42.463.2 46.162.5 43.462.9 50.263.7 * 52.063.5 * 48.263.2

Nosing duration [s] 46.662.0 44.964.1 47.863.2 55.265.1 41.562.7 45.363.1 62.466.0 ## 51.665.8

Anogenital sniffing [n] 21.161.7 18.562.2 21.562.3 25.262.8 17.862.0 21.362.8 29.462.6 ## 26.263.4

Anogenital sniffing duration [s] 20.362.1 19.062.8 23.463.3 27.263.1 14.461.9 19.363.1 29.963.6 ## 23.361.9 ##

Total social interaction duration [s] 74.465.5 67.166.4 76.766.8 86.667.6 60.264.1 67.066.1 98.8610.3 ## 84.8610.3

Frequency and duration of nosing and anogenital sniffing with a standard opponent A/JArc mouse after injection with CBD (1, 50 or 100 mg/kg). Data represent means
(6 S.E.M.). Significant one-way ANOVA (split by corresponding factor) results are shown:
*P,0.05 (vs. WT receiving corresponding treatment);
##P,0.01 (vs. vehicle of corresponding genotype).
doi:10.1371/journal.pone.0034129.t002

Figure 4. Sensorimotor gating after injection of CBD. A–C: % PPI on days 1, 21 and treatment withheld (WH) day. Data represent means+S.E.M.
Significant one-way ANOVA (split by corresponding factor) results are shown: ## P,0.01 (vs. vehicle of corresponding genotype), * P,0.05,
** P,0.01 (vs. WT receiving corresponding treatment).
doi:10.1371/journal.pone.0034129.g004

Effects of Cannabidiol in Nrg1 Mutant Mice
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TM HET mice to chronic treatment with antipsychotics has not

been investigated and the behavioural response of mutant mice to

an acute dose of clozapine was task-dependent (i.e. reversal of OF

hyperlocomotion but not sensorimotor gating deficits [26]).

Anxiety. Vehicle-treated Nrg1 TM HET mice showed

reduced anxiety-like behaviour on test day 1 in the LD test and

on the last test day in the OF paradigm. Furthermore, Nrg1

mutants, who had been exposed to acute or long-term 100 mg/kg

CBD exhibited an anxiolytic-like LD phenotype. On the other

hand, the anxiolytic effect of long-term CBD (1 and 100 mg/kg) in

the OF in WT mice was not present in Nrg1 TM HET mice,

suggesting that the effects of CBD on anxiety-related behaviour

are dependent on an intact Nrg1 transmembrane domain. The fact

that anxiolytic-like effects of CBD were only observed in the OF

test reflects the importance of the choice of anxiety test used to

explore the effects of pharmacological and genetic manipulations,

as reported previously in Nrg1 TM HET [25,35] and CBD-treated

C57BL/6JArc mice [14].

Social interaction. There were no pronounced baseline

social interaction differences between Nrg1 TM HET and WT

mice, in accordance with our previous observations in adult mice

[29,32]. Interestingly, long-term CBD robustly increased the total

active social interaction time and specific social behaviours such as

nosing and anogenital sniffing in Nrg1 TMHET but not WT mice, at a

dose (50 mg/kg) which had no concomitant effect on locomotor

activity (data not shown). This selective increase in social

behaviour in Nrg1 TM HET mice suggests that Nrg1 mutation

renders mice more responsive to the facilitatory effects of long-

term CBD on social behaviour. Indeed, while CBD has previously

been reported to have no outright effect on social interaction in

wild type mouse and rat strains [14,36] it reverses pharmacological

deficits in social interaction induced by compounds such as THC

[36,37]. Together, these data suggest that the potential for CBD to

improve social function may be unmasked by the Nrg1 mutation.

Sensorimotor gating. Acute CBD (100 mg/kg) selectively

increased both PPI and the startle response in Nrg1 TM HET

mice. While it is possible that the enhanced PPI may be due to the

Figure 5. Concentration (ng/ml) of CBD in whole blood 2 days
after the last treatment. Data represent means+S.E.M.
doi:10.1371/journal.pone.0034129.g005

Figure 6. Representative autoradiograms showing [3H]ketanserin (5-HT2A receptors) and [3H]muscimol (GABAA receptors) binding
in specific brain regions. Abbreviations: Cg: anterior cingulate cortex; CPu: caudate putamen; HPC: hippocampus; LSD: dorsolateral septum; PrL:
prelimbic cortex; RSG: granular retrosplenial cortex; SN: substantia nigra; Thal: thalamus.
doi:10.1371/journal.pone.0034129.g006
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concomitant increase in startle reactivity, previous reports have

shown that baseline and pharmacologically-induced alterations in

PPI are able to be dissociated from startle pulse- or prepulse-

elicited reactivity [38,39]. Indeed, acute (1, 5 and 50 mg/kg) and

chronic (1 mg/kg) CBD enhanced PPI in male C57BL/6JArc

mice without concomitant alteration in startle reactivity [14],

while acute (1–15 mg/kg) CBD had no effect on PPI in male Swiss

mice but increased the startle response [15]. This suggests a dose-

and strain-dependent effect of CBD on ASR. However, additional

research has to investigate this phenomenon further, as a recent

study in rats suggests ASR-suppressing properties for CBD [40].

Interestingly, PPI was decreased in vehicle-treated Nrg1 TM HET

mice only when tested after cessation of CBD treatment, reflecting

the elusive and protocol-dependent nature of a definitive baseline

PPI phenotype in Nrg1 TM HET mice [26,41,42].

Pharmacokinetics of CBD
Accumulation of CBD in blood in a dose-dependent manner

was reflected by comparable CBD levels after treatment was

withheld for 48 h in both Nrg1 TM HET and WT mice. Recent

Table 3. Specific [3H]ketanserin, [3H]muscimol, [3H]CP 55,940, [3H]WAY 100.635 and [3H]MK-801 binding in different brain regions.

Region WT Nrg1 TM HET

Vehicle CBD 1 CBD 50 CBD 100 Vehicle CBD 1 CBD 50 CBD 100

[3H]ketanserin (5-HT2A receptors)

Prelimbic cortex 30.462.4 30.960.3 30.361.9 31.361.4 31.460.9 30.160.8 31.361.1 31.061.0

Cingulate cortex 30.660.9 30.660.7 30.561.2 30.260.8 30.761.0 31.460.5 30.060.5 30.160.3

Caudate putamen 28.760.8 28.461.4 29.062.5 27.960.8 28.161.0 29.361.0 27.860.8 27.860.8

Hippocampus 25.860.5 25.460.5 25.560.8 25.360.7 25.361.1 26.160.3 25.261.0 25.060.9

Substantia nigra 34.660.9 33.461.8 31.361.0# 32.062.6 32.361.1* 34.160.9 33.062.0 32.460.7

[3H]muscimol (GABAA receptors)

Prelimbic cortex 21.860.1 21.760.8 21.961.3 21.561.5 20.860.9 21.361.1 22.261.1 21.161.9

Cingulate cortex 22.760.3 23.061.3 23.361.4 22.460.9 22.361.0 22.760.6 23.361.3 22.362.1

Caudate putamen 20.160.3 20.260.7 20.260.8 19.860.6 19.760.6 20.060.4 20.460.6 19.761.2

Dorsolateral septum 19.760.8 19.560.7 19.460.9 19.761.0 19.360.5 19.060.8 19.260.7 19.461.2

Retrosplenial granular cortex 20.560.8 20.560.6 20.260.7 20.560.8 19.960.3 20.460.7 21.360.6## 20.360.5

CA1 22.360.9 22.261.2 21.661.5 22.061.2 21.661.0 21.661.0 22.461.2 21.961.2

Dentate gyrus 22.360.9 22.461.1 22.061.5 22.561.3 22.161.5 22.160.7 23.061.4 22.661.3

Thalamus 23.461.1 23.460.9 23.461.6 23.261.1 22.761.1 22.860.7 24.161.5 23.061.1

[3H]CP 55,940 (CB1 receptors)

Cingulate cortex 27.060.6 26.460.5 26.861.0 26.660.6 26.460.4 26.860.4 27.261.0 27.060.7

Caudate putamen 26.360.3 26.460.7 26.660.6 26.160.8 26.360.4 26.860.4 26.660.3 26.660.3

Dorsolateral septum 25.560.9 25.361.1 25.361.1 25.161.5 25.460.5 25.461.2 25.760.9 25.860.6

Ventrolateral septum 25.461.1 25.461.4 26.661.3 25.761.1 26.461.0 25.561.5 25.862.1 25.261.1

Hippocampus 26.360.5 26.060.6 26.160.5 25.961.2 26.260.9 26.260.6 26.761.0 26.660.7

Substantia nigra 105.669.7 101.065.2 96.468.9 97.969.6 106.065.7 102.569.2 102.663.2 107.6612.7

[3H]WAY 100,635 (5-HT1A receptors)

Cingulate cortex 25.961.8 25.561.0 26.160.7 26.361.0 26.160.8 25.860.9 25.661.2 25.560.7

Hippocampus 85.369.7 86.565.7 85.266.7 84.5610.6 86.762.8 88.465.2 86.364.7 83.164.6

Lateral septum 31.362.1 32.161.7 32.360.8 31.362.3 32.361.4 31.961.1 31.461.4 31.660.6

Retrosplenial granular cortex 30.163.1 28.661.5 28.861.5 29.862.4 31.162.4 30.060.7 30.561.8 29.362.0

Nucleus of the vertical limb of the diagonal
band

32.363.0 33.262.0 33.361.1 31.462.7 32.062.6 34.161.3 33.661.8 32.862.3

[3H]MK-801 (NMDA receptors)

Cingulate cortex 36.960.9 37.861.6 38.161.7 37.660.7 37.560.5 38.660.7 38.361.0 38.160.8

Caudate putamen 31.461.0 32.161.1 32.161.3 32.460.8 32.260.4 32.260.5 32.561.0 31.861.2

Hippocampus 109.962.3 111.664.6 111.965.1 111.262.5 110.462.3 113.063.9 114.864.9 111.763.6

Dorsolateral septum 34.062.2 33.961.3 35.562.0 34.062.1 35.560.4 36.061.1 33.662.5 33.261.1

Retrosplenial granular cortex 32.461.4 33.261.5 33.661.6 32.661.0 32.860.4 33.261.0 34.561.1 33.561.0

[3H]ketanserin, [3H]muscimol, [3H]CP 55,940, [3H]WAY 100,635 and [3H]MK-801 binding 48 h after the last of 21 daily injections of CBD (1, 50 or 100 mg/kg) (on WH day).
Data represent mean binding density nCi/mg tissue (6 S.E.M.). Significant one-way ANOVA (split by corresponding factor) results are shown:
*P,0.05 (vs. WT receiving corresponding treatment),
#P,0.05,
##P,0.01 (vs. vehicle of corresponding genotype).
doi:10.1371/journal.pone.0034129.t003
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data suggest that a single dose of 120 mg/kg CBD administered

i.p. to mice is undetectable in brain and plasma after 24 h using

tandem liquid chromatography mass spectrometry [43]. However,

our method detected CBD in whole blood 48 h after the last i.p.

injection suggesting that CBD accrues in the body with repeated

exposure. This effect of repeated administration might be due to

CBD’s hydrophobicity and would be similar to the characteristics

of THC that is retained in lipid rich tissues [44,45]. It is possible

that residual CBD affected the behavioural performance of test

mice during the WH day. However, the lack of difference between

residual CBD levels suggests that the behavioural and receptor

binding differences between genotypes are not due to simple

differences in CBD blood concentration.

CBD alters 5-HT2A and GABAA receptor binding in a
genotype-specific manner
Nrg1 TM HET mice displayed a baseline decrease in 5-HT2A

receptor binding in the substantia nigra. CBD (50 mg/kg)

selectively reduced binding of 5-HT2A receptors in the substantia

nigra in WT mice and increased binding of GABAA receptors in

the retrosplenial granular cortex in mutant mice. These changes in

5-HT2A and GABAA occur in areas relevant to both the

behavioural changes we have observed and to the pathophysiology

of schizophrenia. Midbrain 5-HT2 receptors regulate striatal

dopaminergic transmission [46,47]. Therefore, reduced 5-HT2A

receptor density might be related to the hyperactivity that occurs

in Nrg1 TM HET mice. On the other hand, increased 5-HT2A

binding in the cortex of adult Nrg1 TM HET mice [48] suggests

that changes in these receptors in response to Nrg1 mutation may

occur in a region- and thus functionally specific manner. The

GABAA binding increase in the granular retrosplenial cortex of

mutant mice treated with CBD (50 mg/kg) occurred in the

absence of baseline binding differences. Since the retrosplenial

cortex mediates emotional responsivity and processing of emo-

tional salience [49,50], it is tempting to speculate that the selective

increase in social interaction by the same dose of CBD in mutant

mice is related to the change in GABAA binding. Indeed, GABAA

agonists exert anxiolytic-like effects in the social interaction test

[51].

Brains were collected from mice that had not received CBD for

48 h. It is possible that the binding changes we observed are

related to a withdrawal-like state induced by withholding CBD

treatment for 48 h, rather than to changes induced by the long-

term treatment itself. However, the presence of CBD in blood at

the same time as the collection of brain tissue and the absence of

any withdrawal symptoms in the test cohorts suggest that

withdrawal effects are unlikely.

It is tempting to speculate on mechanisms underlying the

unmasking of certain effects of CBD, such as anxiolytic-like effects

in Nrg1 mutant mice, since our data would suggest that the normal

functioning of Nrg1 might suppress some effects of CBD. For

example, Nrg1 mutation might enhance the responsiveness of

targets of CBD suggested to be involved in modulating anxiety,

such as the 5-HT1A receptor [12,52]. We did not observe

increased 5-HT1A receptor binding in our mutants; nevertheless

this does not rule out enhanced signal transduction from this

receptor that might be related to altered Nrg1 function. CBD

might also modify behaviour via altering endocannabinoid tone,

e.g. via inhibition of the anandamide hydrolysis enzyme fatty acid

amide hydrolase [24]. Given that inhibition of this enzyme has

documented anxiolytic effects [53], it would be worth investigating

common signalling pathways between Nrg1 and the endocanna-

binoid system.

In conclusion, we present the novel findings that CBD alters

specific aspects of the behavioural phenotype and brain receptor

binding density in Nrg1 TM HET mice. CBD did not reverse

several of the schizophrenia-related behavioural features of mutant

mice, namely hyperactivity, reduced PPI and reduced 5-HT2A

receptor density, although unlike those treated with vehicle,

mutants treated with higher doses of CBD failed to express

significant hyperactivity. CBD selectively enhanced social behav-

iour, prepulse inhibition, and retrosplenial GABAA binding in

Nrg1 TM HET mice, supporting its potential therapeutic value in

treating specific symptoms of schizophrenia. It appears that

mutation in Nrg1 unmasks this behavioural effect of CBD, whereas

intact Nrg1 is crucial for its anxiolytic effects. Future research has

to investigate the effectiveness of long-term treatment with

established antipsychotic drugs in this animal model to enable

the evaluation of the current findings for schizophrenia therapy.

Materials and Methods

Animals
Male heterozygous Nrg1+/2 (Nrg1 TM HET) and wild type-like

control Nrg1+/+ (WT) littermates [25] aged 2163 weeks were used

as males exhibit a stronger sensitivity to cannabinoids than females

[29,32]. Standard social interaction opponents were age-matched

male A/JArc mice (Animal Resources Centre, Canning Vale,

Australia). Mice were pair-housed with limited environmental

enrichment [mouse igloo (Bioserv, Frenchtown, USA) and a metal

ring in the cage lid] under a 12:12 h light:dark schedule. Food and

water were available ad libitum. Research and animal care

procedures were approved by the University of New South Wales

Animal Care and Ethics Committee in accordance with the

Australian Code of Practice for the Care and Use of Animals for

Scientific Purposes (ACEC approval number: 08/28A).

Drug treatment
CBD (THC Pharm GmbH, Frankfurt, Germany) was suspend-

ed in a 1:1:18 mixture of ethanol:Tween 80H:saline. Mice received

21 consecutive daily intraperitoneal (i.p.) injections of vehicle

(1:1:18 ethanol:Tween 80H:saline mixture) or CBD (1, 50 or

100 mg/kg) at a volume of 10 ml/kg as published previously [14].

Behavioural testing
Treatment injections commenced 30 min after the start of the

light cycle. Mice were behaviourally tested 30–45 min post

injection on the first day of treatment (‘‘acute’’ group) and on

intermittent days throughout repeated treatment (‘‘long-term’’

group), and after two days after the final dose of CBD treatment

[‘‘treatment withheld (WH day)’’ group] (Table 4). On behav-

ioural testing days injections were staggered within the light cycle

to standardise intervals between injection and testing [i.e. as

groups of test mice (maximum of four mice at a time) were run

consecutively, injections were administered the requisite number

of minutes prior to testing to ensure consistent intervals between

treatment and testing]. Mice were returned to the home cage

following injection and behavioural testing. Environmental odours

were removed from test apparatus between trials with 70%

ethanol. The test order was based on an earlier study [14].

Light–dark test (LD). Mice were placed into the opening of

a dark box insert in an open field (OF) activity chamber

(41641 cm; Tru-Scan Photo Beam Activity System: Coulbourn

Instruments, Whitehall, USA) for 10 min. Horizontal activity

(distance travelled) for both light (,70 lx) and dark chambers

(,5 lx) was measured by the Tru-Scan system and ANY-mazeTM

video tracking software (Stoelting Co., Wood Dale, USA; light
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chamber only). Time in the dark chamber was interpolated by

subtraction of time in the light chamber (measured by ANY-maze)

from the total test time. The ratio of distance travelled in the light

compartment to total distance travelled (distance ratio) and time

spent in the light compartment were taken as measures of anxiety.

Spontaneous locomotor activity. Locomotor activity was

measured in the OF chamber for 10 min. Distance travelled and

vertical activity (rearing) in central and peripheral zones (centre

coordinates 7.6 cm67.6 cm from the periphery) were measured

by Tru-Scan and ANY-mazeTM software. The ratio of central to

total distance travelled (distance ratio) and time spent in the centre

were taken as measures of anxiety [54].

Novel object recognition test (NORT). The distinction

between familiar and unfamiliar objects is an index of recognition

memory [55,56]. Mice were habituated to the empty NORT

apparatus (grey perspex arena; 35635630 cm) for 5 min twice

daily for 2 days. The following day, mice were habituated twice to

the test procedure (i.e. exposure to identical objects placed in

opposite corners). The next day, mice were placed in the arena for

10 min, which contained two novel identical objects, and allowed

to explore freely (test trial 1). In test trial 2, 60 min later, the arena

contained one copy of these objects (familiar object) and one novel

object in the same positions as in test trial 1. Object exploration

was scored for 5 min by the behaviours nosing (when the mouse

directed its nose to an object at a distance of#1 cm) and rearing on

the object. Data from NORT are not reported since the

performance of WT mice at the novel object was not

significantly different from chance (i.e. no indication of successful

learning of objects).

Social interaction (SI). SI between rodent pairs is used to

measure anxiety-like behaviours [57]. Furthermore, reduction in

SI models aspects of social withdrawal, which is also observed in

schizophrenia patients [58]. Test mice and untreated, weight-

matched (i.e. A/J body weight,test mice body weight) standard

opponents were placed in opposite corners of the arena, which was

used for NORT testing. Frequency and duration of the active

socio-positive behaviours nosing [i.e. test mouse sniffs at the

opponent’s body, which is in close proximity to the test mouse

(,1 cm)], anogenital sniffing, allogrooming, following and climbing over/

under were scored for 10 min. Distance travelled was measured by

ANY-mazeTM.

Prepulse inhibition (PPI). PPI, an operational measure of

sensorimotor gating impaired in schizophrenia patients [59], is the

attenuation of the startle response by a non-startling stimulus

(prepulse) presented before the startling stimulus (pulse). Startle

reactivity was measured for 200 ms post pulse onset using SR-LAB

startle chambers (San Diego Instruments, San Diego, USA). The

PPI test consisted of 5 min acclimatisation to 70 dB background

noise, followed by 105 trials in a pseudorandom order as published

previously [41]: 5670 dB trials (background); 5680 dB trials;

56100 dB trials; 156120 dB trials (startle) and 5 sets of 15 trials

comprising a prepulse of either 74, 82 or 86 dB presented 32, 64,

128, 256 or 512 ms (variable interstimulus interval; ISI) prior to a

startling pulse of 120 dB (PPI response). The intertrial interval

varied randomly from 10–20 s. Acoustic startle response (ASR)

was calculated as the mean amplitude to the middle 5 startle trials

to eliminate habituation effects [60]. Percentage PPI (% PPI) was

calculated as [(mean startle response – PPI response)/mean startle

response]6100. % PPI was averaged across ISIs.

Detection and quantification of CBD in whole blood
samples
Trunk blood was collected in EDTA-coated tubes immediately

after PPI testing on WH day. CBD concentration was measured as

described previously [44] with modifications for CBD analysis

[61,62]. 50 ml of D3-CBD (0.25 mg/L; PM Separations, Capa-

laba, Australia) internal standard solution was added to 0.5 ml

trunk blood. Acetate buffer was added (pH 4.0) and CBD

extracted with 1-chloro-butane solvent. Following complete drying

under nitrogen, samples underwent derivatisation of the polar

functional groups (COOH, OH) with bis(trimethylsilyl)trifluroa-

cetamide. Quantification (1.25 ng/ml limit of quantification) of

the derivatised extract was performed by gas chromatography-

mass spectrometry (GC-MS) (Shimadzu 2010 Plus system:

Shimadzu Scientific Instruments, Rydalmere, Australia).

Receptor autoradiography
Brains from a subset of sacrificed mice (n = 4–5 per factor;

selected randomly) were dissected 48 h after the last CBD

injection, snap frozen and stored at 280uC. Coronal sections

(14 mm) were cut and thaw-mounted onto slides. Specific receptors

were chosen to investigate the effects of CBD treatment on the

endocannabinoid system (i.e. CB1) and to determine the impact of

CBD on a selection of central neurotransmitter systems relevant to

schizophrenia (i.e. NMDA, 5-HT1A, 5-HT2A and GABAA). For

analysis, brain regions with relevance to schizophrenia and the

endocannabinoid system were chosen in particular.

Table 4. Test biography of mice.

Test/Treatment Day Test

1 Light-dark test (LD), open field (OF), prepulse inhibition (PPI)

13 OF

14 Novel object recognition test (NORT) habituation trials 1–2

15 LD, NORT habituation trial 3

16 NORT habituation trials 4–5

17 NORT test trials 1–2

19 Social interaction

21 PPI

WH OF, LD, PPI

126 mice were injected with either vehicle or CBD (1, 50 or 100 mg/kg body weight) once daily from test day 1–21 (n = 14–17). Animals were tested again in OF, LD and
PPI 48 h after the completion of the chronic CBD administration (WH day = test day 23).
doi:10.1371/journal.pone.0034129.t004
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Autoradiographic binding. For CB1 receptors, sections

were incubated for in 50 mM Tris-HCl buffer (pH 7.4)

containing 5% bovine serum albumin (30 min) then in the same

buffer containing 10 nM [3H]CP-55,940 (168 Ci/mmol; Perkin

Elmer, Boston, USA) in the presence (non-specific binding) or

absence (total binding) of 10 mM CP 55,940 [63].

For 5-HT1A receptors, sections were incubated in 50 nM Tris-

HCl buffer (30 min) then in the same buffer containing 5 nM [3H]

WAY-100635 (83 Ci/mmol; Perkin Elmer) and 10 M pargyline in

the presence (non-specific binding) or absence (total binding) of

10 mM 5-HT (150 min) [64].

For 5-HT2A receptors, sections were incubated in 170 mM

Tris-HCl buffer (15 min) then in the same buffer containing 4 nM

[3H]ketanserin (88 Ci/mmol; Perkin Elmer) in the presence (non-

specific binding) or absence (total binding) of 2 mM spiperone

(120 min) [65].

For NMDA receptors, sections were incubated in 30 mM

HEPES buffer (pH 7.5) containing 100 mM glycine, 100 mM
glutamate, 1 mM EDTA and 20 nM [3H]MK-801 (17.1 Ci/

mmol; Perkin Elmer) in the presence (non-specific binding) or

absence (total binding) of 20 mM MK-801 (2.5 h) [66].

For GABAA receptors, sections were incubated in 50 mM Tris-

HCl buffer (pH 7.0) (365 min) then in the same buffer containing

3 nM [3H]muscimol (29.5 Ci/mmol) in the presence (non-specific

binding) or absence (total binding) of 100 mM GABA (40 min)

[67].

All sections were washed in ice-cold buffer, dipped in distilled

water and air dried.

Quantification. Slides were exposed to Kodak BioMax MR

film. Developed films were analysed using a computer-assisted

image analysis system, Multi-Analyst, connected to a GS-690

Imaging Densitometer (Bio-Rad, Hercules, USA). Binding

quantification was performed by measuring the average density

in brain regions identified using a mouse brain atlas [68] in 2–3

adjacent sections and comparing the values against

autoradiographic standards (Amersham: GE Healthcare,

Buckinghamshire, UK).

Statistical analysis
Behavioural measures and binding density were analysed with

two-way analysis of variance (ANOVA) (between-subjects factors:

‘treatment’ and ‘genotype’) to distinguish between acute (day 1),

long-term (days 13–21), and treatment withheld (day 23) effects.

Repeated measures (RM) three-way ANOVAs were used for

NORT [within-subjects factor: ‘object’ (novel or familiar)] and PPI

(within-subjects factor: ‘prepulse intensity’). Initial ANOVAs were

followed by two- or one-way ANOVAs split by the corresponding

factor(s) if appropriate as published previously [29–32]. Differ-

ences between CBD doses were determined with Dunnett’s post-

hoc test whereas body weight was compared using an unpaired t-

test. Data are presented as means 6 standard error of the mean

(S.E.M.). Main effects were regarded as statistically significant

when P,0.05. A total of 126 mice were tested (n = 14–17).

Degrees of freedom, F-values and P-values are shown for three-

and two-way ANOVAs (* versus WT receiving corresponding

treatment; # versus vehicle of corresponding genotype) are

presented. In case malfunction of software or test equipment

occurred, data were excluded, resulting in altered degrees of

freedom for some analyses. Analysis was performed using SPSS

17.0.
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