126 research outputs found

    Definitive Hematopoiesis in the Yolk Sac Emerges from Wnt-Responsive Hemogenic Endothelium Independently of Circulation and Arterial Identity

    Get PDF
    Adult-repopulating hematopoietic stem cells (HSCs) emerge in low numbers in the midgestation mouse embryo from a subset of arterial endothelium, through an endothelial-to-hematopoietic transition. HSC-producing arterial hemogenic endothelium relies on the establishment of embryonic blood flow and arterial identity, and requires β-catenin signaling. Specified prior to and during the formation of these initial HSCs are thousands of yolk sac-derived erythro-myeloid progenitors (EMPs). EMPs ensure embryonic survival prior to the establishment of a permanent hematopoietic system, and provide subsets of long-lived tissue macrophages. While an endothelial origin for these HSC-independent definitive progenitors is also accepted, the spatial location and temporal output of yolk sac hemogenic endothelium over developmental time remain undefined. We performed a spatiotemporal analysis of EMP emergence, and document the morphological steps of the endothelial-to-hematopoietic transition. Emergence of rounded EMPs from polygonal clusters of Kit(+) cells initiates prior to the establishment of arborized arterial and venous vasculature in the yolk sac. Interestingly, Kit(+) polygonal clusters are detected in both arterial and venous vessels after remodeling. To determine whether there are similar mechanisms regulating the specification of EMPs with other angiogenic signals regulating adult-repopulating HSCs, we investigated the role of embryonic blood flow and Wnt/β-catenin signaling during EMP emergence. In embryos lacking a functional circulation, rounded Kit(+) EMPs still fully emerge from unremodeled yolk sac vasculature. In contrast, canonical Wnt signaling appears to be a common mechanism regulating hematopoietic emergence from hemogenic endothelium. These data illustrate the heterogeneity in hematopoietic output and spatiotemporal regulation of primary embryonic hemogenic endothelium

    Insurer and Employer Views on Pediatric Obesity Treatment: a Qualitative Study

    Get PDF
    This is the peer reviewed version of the following article: Hampl, S.E., Davis, A.M., Sampilo, M.L., Stephens, K.L. and Dean, K. (2013), Insurer and employer views on pediatric obesity treatment: A qualitative study. Obesity, 21: 795–799. doi:10.1002/oby.20112, which has been published in final form at http://doi.org/10.1002/oby.20112. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.OBJECTIVE The effectiveness of group-based comprehensive, multidisciplinary (stage 3) pediatric weight management programs is backed by a growing body of literature, yet insurance coverage of these programs is scarce to nonexistent, limiting their reach and long-term survival. The objective of this study was to better understand the perspectives of insurers and large employers on the issue of group-based treatment coverage. DESIGN AND METHODS The authors performed a qualitative study utilizing structured interviews with these stakeholders, following accepted techniques. RESULTS Six major themes emerged: cost, program effectiveness, corporate social responsibility, secondary parental (employee) benefits, coverage options and new benefit determination. CONCLUSION Future efforts to secure payment for group-based pediatric weight management programs should address these key themes

    Primitive Erythropoiesis Is Regulated by miR-126 via Nonhematopoietic Vcam-1+ Cells

    Get PDF
    SummaryPrimitive erythropoiesis defines the onset of hematopoiesis in the yolk sac of the early embryo and is initiated by the emergence of progenitors assayed as colony-forming cells (EryP-CFCs). EryP-CFCs are detected for only a narrow window during embryonic development, suggesting that both their initiation and termination are tightly controlled. Using the embryonic stem differentiation system to model primitive erythropoiesis, we found that miR-126 regulates the termination of EryP-CFC development. Analyses of miR-126 null embryos revealed that this miR also regulates EryP-CFCs in vivo. We identified vascular cell adhesion molecule-1 (Vcam-1) expressed by a mesenchymal cell population as a relevant target of miR-126. Interaction of EryP-CFCs with Vcam-1 accelerated their maturation to ßh1-globin+ and Ter119+ cells through a Src family kinase. These findings uncover a cell nonautonomous regulatory pathway for primitive erythropoiesis that may provide insight into the mechanism(s) controlling the developmental switch from primitive to definitive hematopoiesis

    β2M Signals Monocytes Through Non-Canonical TGFβ Receptor Signal Transduction.

    Get PDF
    Rationale: Circulating monocytes can have pro-inflammatory or pro-reparative phenotypes. The endogenous signaling molecules and pathways that regulate monocyte polarization in vivo are poorly understood. We have shown that platelet derived beta-2 microglobulin (β2M) and transforming growth factor beta (TGFβ) have opposing effects on monocytes by inducing inflammatory and reparative phenotypes respectively, but each bind and signal through the same receptor. We now define the signaling pathways involved. Objective: To determine the molecular mechanisms and signal transduction pathways by which β2M and TGFβ regulate monocyte responses both in vitro and in vivo. Methods and Results: Wild-type (WT) and platelet specific β2M knockout (Plt-β2M-/-) mice were treated intravenously with either β2M or TGFβ to increase plasma concentrations to those in cardiovascular diseases. Elevated plasma β2M increased pro-inflammatory monocytes, while increased plasma TGFβ increased pro-reparative monocytes. TGFβ receptor (TGFβR) inhibition blunted monocyte responses to both β2M and TGFβ in vivo. Using imaging flow cytometry, we found that β2M decreased monocyte SMAD2/3 nuclear localization, while TGFβ promoted SMAD nuclear translocation, but decreased noncanonical/ inflammatory (JNK and NFκB nuclear localization). This was confirmed in vitro using both imaging flow cytometry and immunoblots. β2M, but not TGFβ, promoted ubiquitination of SMAD3 and SMAD4, that inhibited their nuclear trafficking. Inhibition of ubiquitin ligase activity blocked noncanonical SMAD-independent monocyte signaling and skewed monocytes towards a pro-reparative monocyte response. Conclusions: Our findings indicate that elevated plasma β2M and TGFβ dichotomously polarize monocytes. Furthermore, these immune molecules share a common receptor, but induce SMAD-dependent canonical signaling (TGFβ) versus non-canonical SMAD-independent signaling (β2M) in a ubiquitin ligase dependent manner. This work has broad implications as β2M is increased in several inflammatory conditions, while TGFβ is increased in fibrotic diseases.pre-print3451 K

    Lung Megakaryocytes are Immune Modulatory Cells that Present Antigen to CD4+ T cells.

    Get PDF
    Although platelets are the cellular mediators of thrombosis, they are also immune cells. Platelets interact both directly and indirectly with immune cells, impacting their activation and differentiation, as well as all phases of the immune response. Megakaryocytes (Mks) are the cell source of circulating platelets, and until recently Mks were typically only considered bone marrow–resident (BM-resident) cells. However, platelet-producing Mks also reside in the lung, and lung Mks express greater levels of immune molecules compared with BM Mks. We therefore sought to define the immune functions of lung Mks. Using single-cell RNA sequencing of BM and lung myeloid-enriched cells, we found that lung Mks, which we term MkL, had gene expression patterns that are similar to antigen-presenting cells. This was confirmed using imaging and conventional flow cytometry. The immune phenotype of Mks was plastic and driven by the tissue immune environment, as evidenced by BM Mks having an MkL-like phenotype under the influence of pathogen receptor challenge and lung-associated immune molecules, such as IL-33. Our in vitro and in vivo assays demonstrated that MkL internalized and processed both antigenic proteins and bacterial pathogens. Furthermore, MkL induced CD4+ T cell activation in an MHC II–dependent manner both in vitro and in vivo. These data indicated that MkL had key immune regulatory roles dictated in part by the tissue environment.pre-print236 K
    corecore