28 research outputs found

    Complexity Heliophysics: A lived and living history of systems and complexity science in Heliophysics

    Full text link
    In this piece we study complexity science in the context of Heliophysics, describing it not as a discipline, but as a paradigm. In the context of Heliophysics, complexity science is the study of a star, interplanetary environment, magnetosphere, upper and terrestrial atmospheres, and planetary surface as interacting subsystems. Complexity science studies entities in a system (e.g., electrons in an atom, planets in a solar system, individuals in a society) and their interactions, and is the nature of what emerges from these interactions. It is a paradigm that employs systems approaches and is inherently multi- and cross-scale. Heliophysics processes span at least 15 orders of magnitude in space and another 15 in time, and its reaches go well beyond our own solar system and Earth's space environment to touch planetary, exoplanetary, and astrophysical domains. It is an uncommon domain within which to explore complexity science. After first outlining the dimensions of complexity science, the review proceeds in three epochal parts: 1) A pivotal year in the Complexity Heliophysics paradigm: 1996; 2) The transitional years that established foundations of the paradigm (1996-2010); and 3) The emergent literature largely beyond 2010. This review article excavates the lived and living history of complexity science in Heliophysics. The intention is to provide inspiration, help researchers think more coherently about ideas of complexity science in Heliophysics, and guide future research. It will be instructive to Heliophysics researchers, but also to any reader interested in or hoping to advance the frontier of systems and complexity science

    Linked Autonomous Interplanetary Satellite Orbit Navigation

    Get PDF
    A navigation technology known as LiAISON (Linked Autonomous Interplanetary Satellite Orbit Navigation) has been known to produce very impressive navigation results for scenarios involving two or more cooperative satellites near the Moon, such that at least one satellite must be in an orbit significantly perturbed by the Earth, such as a lunar halo orbit. The two (or more) satellites track each other using satellite-to-satellite range and/or range-rate measurements. These relative measurements yield absolute orbit navigation when one of the satellites is in a lunar halo orbit, or the like. The geometry between a lunar halo orbiter and a GEO satellite continuously changes, which dramatically improves the information content of a satellite-to-satellite tracking signal. The geometrical variations include significant out-of-plane shifts, as well as inplane shifts. Further, the GEO satellite is almost continuously in view of a lunar halo orbiter. High-fidelity simulations demonstrate that LiAISON technology improves the navigation of GEO orbiters by an order of magnitude, relative to standard ground tracking. If a GEO satellite is navigated using LiAISON- only tracking measurements, its position is typically known to better than 10 meters. If LiAISON measurements are combined with simple radiometric ground observations, then the satellite s position is typically known to better than 3 meters, which is substantially better than the current state of GEO navigation. There are two features of LiAISON that are novel and advantageous compared with conventional satellite navigation. First, ordinary satellite-to-satellite tracking data only provides relative navigation of each satellite. The novelty is the placement of one navigation satellite in an orbit that is significantly perturbed by both the Earth and the Moon. A navigation satellite can track other satellites elsewhere in the Earth-Moon system and acquire knowledge about both satellites absolute positions and velocities, as well as relative positions and velocities in space. The second novelty is that ordinarily one requires many satellites in order to achieve full navigation of any given customer s position and velocity over time. With LiAISON navigation, only a single navigation satellite is needed, provided that the satellite is significantly affected by the gravity of the Earth and the Moon. That single satellite can track another satellite elsewhere in the Earth- Moon system and obtain absolute knowledge of both satellites states

    Toward a next generation particle precipitation model: Mesoscale prediction through machine learning (a case study and framework for progress)

    Get PDF
    We advance the modeling capability of electron particle precipitation from the magnetosphere to the ionosphere through a new database and use of machine learning (ML) tools to gain utility from those data. We have compiled, curated, analyzed, and made available a new and more capable database of particle precipitation data that includes 51 satellite years of Defense Meteorological Satellite Program (DMSP) observations temporally aligned with solar wind and geomagnetic activity data. The new total electron energy flux particle precipitation nowcast model, a neural network called PrecipNet, takes advantage of increased expressive power afforded by ML approaches to appropriately utilize diverse information from the solar wind and geomagnetic activity and, importantly, their time histories. With a more capable representation of the organizing parameters and the target electron energy flux observations, PrecipNet achieves a \u3e50% reduction in errors from a current state-of-the-art model oval variation, assessment, tracking, intensity, and online nowcasting (OVATION Prime), better captures the dynamic changes of the auroral flux, and provides evidence that it can capably reconstruct mesoscale phenomena. We create and apply a new framework for space weather model evaluation that culminates previous guidance from across the solar-terrestrial research community. The research approach and results are representative of the “new frontier” of space weather research at the intersection of traditional and data science-driven discovery and provides a foundation for future efforts

    Cultivating a culture of inclusivity in heliophysics

    Get PDF
    A large number of heliophysicists from across career levels, institution types, and job titles came together to support a poster at Heliophysics 2050 and the position papers for the 2024 Heliophysics decadal survey titled “Cultivating a Culture of Inclusivity in Heliophysics,” “The Importance of Policies: It’s not just a pipeline problem,” and “Mentorship within Heliophysics.” While writing these position papers, the number of people who privately shared disturbing stories and experiences of bullying and harassment was shocking. The number of people who privately expressed how burned out they were was staggering. The number of people who privately spoke about how they considered leaving the field for their and their family’s health was astounding. And for as much good there is in our community, it is still a toxic environment for many. If we fail to do something now, our field will continue to suffer. While acknowledging the ongoing growth that we as individuals must work toward, we call on our colleagues to join us in working on organizational, group, and personal levels toward a truly inclusive culture, for the wellbeing of our colleagues and the success of our field. This work includes policies, processes, and commitments to promote: accountability for bad actors; financial security through removing the constant anxiety about funding; prioritization of mental health and community through removing constant deadlines and constant last-minute requests; a collaborative culture rather than a hyper-competitive one; and a community where people can thrive as whole persons and do not have to give up a healthy or well-rounded life to succeed

    Deep Learning for Space Weather Prediction: Bridging the Gap between Heliophysics Data and Theory

    Full text link
    Traditionally, data analysis and theory have been viewed as separate disciplines, each feeding into fundamentally different types of models. Modern deep learning technology is beginning to unify these two disciplines and will produce a new class of predictively powerful space weather models that combine the physical insights gained by data and theory. We call on NASA to invest in the research and infrastructure necessary for the heliophysics' community to take advantage of these advances.Comment: Heliophysics 2050 White Pape

    Space Weather Modeling Capabilities Assessment: Auroral Precipitation and Highâ Latitude Ionospheric Electrodynamics

    Full text link
    As part of its International Capabilities Assessment effort, the Community Coordinated Modeling Center initiated several working teams, one of which is focused on the validation of models and methods for determining auroral electrodynamic parameters, including particle precipitation, conductivities, electric fields, neutral density and winds, currents, Joule heating, auroral boundaries, and ion outflow. Auroral electrodynamic properties are needed as input to space weather models, to test and validate the accuracy of physical models, and to provide needed information for space weather customers and researchers. The working team developed a process for validating auroral electrodynamic quantities that begins with the selection of a set of events, followed by construction of ground truth databases using all available data and assimilative data analysis techniques. Using optimized, predefined metrics, the ground truth data for selected events can be used to assess model performance and improvement over time. The availability of global observations and sophisticated data assimilation techniques provides the means to create accurate ground truth databases routinely and accurately.Key PointsA working team has been established to develop a process for validation of auroral precipitation and electrodynamics modelsValidation of auroral electrodynamic parameters requires generation of ground truth data sets for selected eventsCurrent observations and data assimilation techniques continue to improve the accuracy of global auroral electrodynamic specificationPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/148365/1/swe20815_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/148365/2/swe20815.pd

    Reimagining Heliophysics: A bold new vision for the next decade and beyond

    Full text link
    The field of Heliophysics has a branding problem. We need an answer to the question: ``What is Heliophysics\?'', the answer to which should clearly and succinctly defines our science in a compelling way that simultaneously introduces a sense of wonder and exploration into our science and our missions. Unfortunately, recent over-reliance on space weather to define our field, as opposed to simply using it as a practical and relatable example of applied Heliophysics science, narrows the scope of what solar and space physics is and diminishes its fundamental importance. Moving forward, our community needs to be bold and unabashed in our definition of Heliophysics and its big questions. We should emphasize the general and fundamental importance and excitement of our science with a new mindset that generalizes and expands the definition of Heliophysics to include new ``frontiers'' of increasing interest to the community. Heliophysics should be unbound from its current confinement to the Sun-Earth connection and expanded to studies of the fundamental nature of space plasma physics across the solar system and greater cosmos. Finally, we need to come together as a community to advance our science by envisioning, prioritizing, and supporting -- with a unified voice -- a set of bold new missions that target compelling science questions - even if they do not explore the traditional Sun- and Earth-centric aspects of Heliophysics science. Such new, large missions to expand the frontiers and scope of Heliophysics science large missions can be the key to galvanizing the public and policymakers to support the overall Heliophysics program
    corecore