2,156 research outputs found

    Detection of Pulsed X-ray Emission from XMM-Newton Observations of PSR J0538+2817

    Full text link
    We report on the XMM-Newton observations of the 143 ms pulsar PSR J0538+2817. We present evidence for the first detections of pulsed X-rays from the source at a frequency which is consistent with the predicted radio frequency. The pulse profile is broad and asymmetric, with a pulse fraction of 18 +/- 3%. We find that the spectrum of the source is well-fit with a blackbody with T^{infty} = (2.12^{+0.04}_{-0.03}) x 10^6 K and N_{H} = 2.5 x 10^21 cm^{-2}. The radius determined from the model fit of 1.68 +/- 0.05 km suggests that the emission is from a heated polar cap. A fit to the spectrum with an atmospheric model reduces the inferred temperature and hence increases the radius of the emitting region, however the pulsar distance determined from the fit is then smaller than the dispersion distance.Comment: 24 pages, 6 figures, 3 tables, accepted for publication in ApJ. Error in radius calculation corrected, discussion and conclusions remain unchange

    A rapid synthesis of evidence on whole systems approaches to obesity prevention to inform policy

    Get PDF
    © 2023 The Author(s) . Published by Oxford University Press on behalf of the European Public Health Association. This is an open-access meeting abstract distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC), https://creativecommons.org/licenses/by-nc/4.0/Peer reviewe

    XMM-Newton Observations of PSR B1706-44

    Full text link
    We report on the XMM-Newton observations of the young, 102 ms pulsar PSR B1706-44. We have found that both a blackbody plus power-law and a magnetized atmospheric model plus power-law provide an excellent fit to the EPIC spectra. The two scenarios are therefore indistinguishable on a statistical basis, although we are inclined to prefer the latter on physical grounds. In this case, assuming a source distance of ~2.3 kpc, the size of the region responsible for the thermal emission is R~13 km, compatible with the surface of a neutron star. A comparison of the surface temperature of PSR B1706-44 obtained from this fit with cooling curves favor a medium mass neutron star with M~1.45 solar masses or M~1.59 solar masses, depending on two different models of proton superfluidity in the interior. The large collecting area of XMM-Newton allows us to resolve a substructure in the broad soft X-ray modulation detected by Chandra, revealing the presence of two separate peaks with pulsed fractions of 7 +/- 4% and 15 +/- 3%, respectively.Comment: 21 pages, 5 figures, 2 tables, accepted for publication in Ap

    On the Correlated X-ray and Optical Evolution of SS Cygni

    Full text link
    We have analyzed the variability and spectral evolution of the prototype dwarf nova system SS Cygni using RXTE data and AAVSO observations. A series of pointed RXTE/PCA observations allow us to trace the evolution of the X-ray spectrum of SS Cygni in unprecedented detail, while 6 years of optical AAVSO and RXTE/ASM light curves show long-term patterns. Employing a technique in which we stack the X-ray flux over multiple outbursts, phased according to the optical light curve, we investigate the outburst morphology. We find that the 3-12 keV X-ray flux is suppressed during optical outbursts, a behavior seen previously, but only in a handful of cycles. The several outbursts of SS Cygni observed with the more sensitive RXTE/PCA also show a depression of the X-rays during optical outburst. We quantify the time lags between the optical and X-ray outbursts, and the timescales of the X-ray recovery from outburst. The optical light curve of SS Cygni exhibits brief anomalous outbursts. During these events the hard X-rays and optical flux increase together. The long-term data suggest that the X-rays decline between outburst. Our results are in general agreement with modified disk instability models (DIM), which invoke a two-component accretion flow consisting of a cool optically thick accretion disk truncated at an inner radius, and a quasi-spherical hot corona-like flow extending to the surface of the white dwarf. We discuss our results in the framework of one such model, involving the evaporation of the inner part of the optically thick accretion disk, proposed by Meyer & Meyer-Hofmeister (1994).Comment: 24 pages, 8 figures, 2 tables, accepted for publication in Ap

    Detection statistics in the micromaser

    Get PDF
    We present a general method for the derivation of various statistical quantities describing the detection of a beam of atoms emerging from a micromaser. The user of non-normalized conditioned density operators and a linear master equation for the dynamics between detection events is discussed as are the counting statistics, sequence statistics, and waiting time statistics. In particular, we derive expressions for the mean number of successive detections of atoms in one of any two orthogonal states of the two-level atom. We also derive expressions for the mean waiting times between detections. We show that the mean waiting times between de- tections of atoms in like states are equivalent to the mean waiting times calculated from the uncorrelated steady state detection rates, though like atoms are indeed correlated. The mean waiting times between detections of atoms in unlike states exhibit correlations. We evaluate the expressions for various detector efficiencies using numerical integration, reporting re- sults for the standard micromaser arrangement in which the cavity is pumped by excited atoms and the excitation levels of the emerging atoms are measured. In addition, the atomic inversion and the Fano-Mandel function for the detection of de-excited atoms is calculated for compari- son to the recent experimental results of Weidinger et al. [1], which reports the first observation of trapping states.Comment: 26 pages, 11 figure

    Increasing healthy life expectancy equitably in England by 5 years by 2035: could it be achieved?

    Get PDF
    In 2018, the UK Government’s Secretary of State for Health and Social Care articulated an ambition to increase healthy life expectancy by five years by 2035 for England, while also reducing the gap in this between the rich and the poor1. While we doubt that England – or indeed any high-income country – could achieve this ambition, we describe a set of policies with the potential to make a significant contribution

    The ROTSE-III Robotic Telescope System

    Get PDF
    The observation of a prompt optical flash from GRB990123 convincingly demonstrated the value of autonomous robotic telescope systems. Pursuing a program of rapid follow-up observations of gamma-ray bursts, the Robotic Optical Transient Search Experiment (ROTSE) has developed a next-generation instrument, ROTSE-III, that will continue the search for fast optical transients. The entire system was designed as an economical robotic facility to be installed at remote sites throughout the world. There are seven major system components: optics, optical tube assembly, CCD camera, telescope mount, enclosure, environmental sensing & protection and data acquisition. Each is described in turn in the hope that the techniques developed here will be useful in similar contexts elsewhere.Comment: 19 pages, including 4 figures. To be published in PASP in January, 2003. PASP Number IP02-11

    Electron Transmission Spectroscopy in Atomic Hydrogen

    Get PDF
    An electron transmission experiment is used to study the resonances in the total scattering cross section of atomic hydrogen below the threshold of the first excited state. The three lowest resonances, designated 1S, 3P, and 1D, are observed and their energies and decay widths are found to be in good agreement with the values predicted theoretically using close coupling with correlation
    corecore