4 research outputs found

    Addressing the climate challenge

    Get PDF
    In 2021, colleagues from across the University of Birmingham community were invited to write articles about topics relevant to the COP26 climate change summit. In this series of articles, experts from across many different disciplines provide new insight and evidence on how we might all understand and tackle climate change

    Measurement of the energy asymmetry in t(t)over-barj production at 13 TeV with the ATLAS experiment and interpretation in the SMEFT framework

    Get PDF
    A measurement of the energy asymmetry in jet-associated top-quark pair production is presented using 139fb1139\,{\mathrm {fb}}^{-1} 139 fb - 1 of data collected by the ATLAS detector at the Large Hadron Collider during pp collisions at s=13TeV\sqrt{s}=13\,\text {TeV} s = 13 TeV . The observable measures the different probability of top and antitop quarks to have the higher energy as a function of the jet scattering angle with respect to the beam axis. The energy asymmetry is measured in the semileptonic ttˉt{\bar{t}} t t ¯ decay channel, and the hadronically decaying top quark must have transverse momentum above 350GeV350\,\text {GeV} 350 GeV . The results are corrected for detector effects to particle level in three bins of the scattering angle of the associated jet. The measurement agrees with the SM prediction at next-to-leading-order accuracy in quantum chromodynamics in all three bins. In the bin with the largest expected asymmetry, where the jet is emitted perpendicular to the beam, the energy asymmetry is measured to be 0.043±0.020-0.043\pm 0.020 - 0.043 ± 0.020 , in agreement with the SM prediction of 0.037±0.003-0.037\pm 0.003 - 0.037 ± 0.003 . Interpreting this result in the framework of the Standard Model effective field theory (SMEFT), it is shown that the energy asymmetry is sensitive to the top-quark chirality in four-quark operators and is therefore a valuable new observable in global SMEFT fits

    The major genetic determinants of HIV-1 control affect HLA class I peptide presentation.

    Get PDF
    Infectious and inflammatory diseases have repeatedly shown strong genetic associations within the major histocompatibility complex (MHC); however, the basis for these associations remains elusive. To define host genetic effects on the outcome of a chronic viral infection, we performed genome-wide association analysis in a multiethnic cohort of HIV-1 controllers and progressors, and we analyzed the effects of individual amino acids within the classical human leukocyte antigen (HLA) proteins. We identified >300 genome-wide significant single-nucleotide polymorphisms (SNPs) within the MHC and none elsewhere. Specific amino acids in the HLA-B peptide binding groove, as well as an independent HLA-C effect, explain the SNP associations and reconcile both protective and risk HLA alleles. These results implicate the nature of the HLA-viral peptide interaction as the major factor modulating durable control of HIV infection

    Effect of Noninvasive Respiratory Strategies on Intubation or Mortality Among Patients With Acute Hypoxemic Respiratory Failure and COVID-19: The RECOVERY-RS Randomized Clinical Trial.

    No full text
    Importance Continuous positive airway pressure (CPAP) and high-flow nasal oxygen (HFNO) have been recommended for acute hypoxemic respiratory failure in patients with COVID-19. Uncertainty exists regarding the effectiveness and safety of these noninvasive respiratory strategies. Objective To determine whether either CPAP or HFNO, compared with conventional oxygen therapy, improves clinical outcomes in hospitalized patients with COVID-19-related acute hypoxemic respiratory failure. Design, Setting, and Participants A parallel group, adaptive, randomized clinical trial of 1273 hospitalized adults with COVID-19-related acute hypoxemic respiratory failure. The trial was conducted between April 6, 2020, and May 3, 2021, across 48 acute care hospitals in the UK and Jersey. Final follow-up occurred on June 20, 2021. Interventions Adult patients were randomized to receive CPAP (n = 380), HFNO (n = 418), or conventional oxygen therapy (n = 475). Main Outcomes and Measures The primary outcome was a composite of tracheal intubation or mortality within 30 days. Results The trial was stopped prematurely due to declining COVID-19 case numbers in the UK and the end of the funded recruitment period. Of the 1273 randomized patients (mean age, 57.4 [95% CI, 56.7 to 58.1] years; 66% male; 65% White race), primary outcome data were available for 1260. Crossover between interventions occurred in 17.1% of participants (15.3% in the CPAP group, 11.5% in the HFNO group, and 23.6% in the conventional oxygen therapy group). The requirement for tracheal intubation or mortality within 30 days was significantly lower with CPAP (36.3%; 137 of 377 participants) vs conventional oxygen therapy (44.4%; 158 of 356 participants) (absolute difference, -8% [95% CI, -15% to -1%], P = .03), but was not significantly different with HFNO (44.3%; 184 of 415 participants) vs conventional oxygen therapy (45.1%; 166 of 368 participants) (absolute difference, -1% [95% CI, -8% to 6%], P = .83). Adverse events occurred in 34.2% (130/380) of participants in the CPAP group, 20.6% (86/418) in the HFNO group, and 13.9% (66/475) in the conventional oxygen therapy group. Conclusions and Relevance Among patients with acute hypoxemic respiratory failure due to COVID-19, an initial strategy of CPAP significantly reduced the risk of tracheal intubation or mortality compared with conventional oxygen therapy, but there was no significant difference between an initial strategy of HFNO compared with conventional oxygen therapy. The study may have been underpowered for the comparison of HFNO vs conventional oxygen therapy, and early study termination and crossover among the groups should be considered when interpreting the findings. Trial Registration isrctn.org Identifier: ISRCTN16912075
    corecore