1,344 research outputs found

    Inverse Magnetoresistance of Molecular Junctions

    Full text link
    We present calculations of spin-dependent electron transport through single organic molecules bridging pairs of iron nanocontacts. We predict the magnetoresistance of these systems to switch from positive to negative with increasing applied bias for both conducting and insulating molecules. This novel inverse magnetoresistance phenomenon is robust, does not depend on the presence of impurities, and is unique to molecular and atomic nanoscale magnetic junctions. Its physical origin is identified and its relevance to experiment and to potential technological applications is discussed.Comment: 5 pages, 3 figures; published version Phys. Rev.

    Pathfinder cells provide a novel therapeutic intervention for acute kidney injury

    Get PDF
    Pathfinder cells (PCs) are a novel class of adult-derived cells that facilitate functional repair of host tissue. We used rat PCs to demonstrate that they enable the functional mitigation of ischemia reperfusion (I/R) injury in a mouse model of renal damage. Female C57BL/6 mice were subjected to 30 min of renal ischemia and treated with intravenous (i.v.) injection of saline (control) or male rat pancreas-derived PCs in blinded experimentation. Kidney function was assessed 14 days after treatment by measuring serum creatinine (SC) levels. Kidney tissue was assessed by immunohistochemistry (IHC) for markers of cellular damage, proliferation, and senescence (TUNEL, Ki67, p16ink4a, p21). Fluorescence in situ hybridization (FISH) was performed to determine the presence of any rat (i.e., pathfinder) cells in the mouse tissue. PC-treated animals demonstrated superior renal function at day 14 post-I/R, in comparison to saline-treated controls, as measured by SC levels (0.13 mg/dL vs. 0.23 mg/dL, p<0.001). PC-treated kidney tissue expressed significantly lower levels of p16ink4a in comparison to the control group (p=0.009). FISH analysis demonstrated that the overwhelming majority of repaired kidney tissue was mouse in origin. Rat PCs were only detected at a frequency of 0.02%. These data confirm that PCs have the ability to mitigate functional damage to kidney tissue following I/R injury. Kidneys of PC-treated animals showed evidence of improved function and reduced expression of damage markers. The PCs appear to act in a paracrine fashion, stimulating the host tissue to recover functionally, rather than by differentiating into renal cells. This study demonstrates that pancreatic-derived PCs from the adult rat can enable functional repair of renal damage in mice. It validates the use of PCs to regenerate damaged tissues and also offers a novel therapeutic intervention for repair of solid organ damage in situ

    Chandra observation of the central galaxies in A1060 cluster of galaxies

    Get PDF
    Chandra observation of the central region of the A1060 cluster of galaxies resolved X-ray emission from two giant elliptical galaxies, NGC 3311 and NGC 3309. The emission from these galaxies consists of two components, namely the hot interstellar medium (ISM) and the low-mass X-ray binaries (LMXBs). We found the spatial extent of the ISM component was much smaller than that of stars for both galaxies, while the ratios of X-ray to optical blue-band luminosities were rather low but within the general scatter for elliptical galaxies. After subtracting the LMXB component, the ISM is shown to be in pressure balance with the intracluster medium of A1060 at the outer boundary of the ISM. These results imply that the hot gas supplied from stellar mass loss is confined by the external pressure of the intracluster medium, with the thermal conduction likely to be suppressed. The cD galaxy NGC 3311 does not exhibit the extended potential structure which is commonly seen in bright elliptical galaxies, and we discuss the possible evolution history of the very isothermal cluster A1060.Comment: 12 pages, 7 figures, Latex2e(emulateapj5), accepted in Ap

    Physics of the Merging Clusters Cygnus A, A3667, and A2065

    Full text link
    We present ASCA gas temperature maps of the nearby merging galaxy clusters Cygnus A, A3667, and A2065. Cygnus A appears to have a particularly simple merger geometry that allows an estimate of the subcluster collision velocity from the observed temperature variations. We estimate it to be ~2000 km/s. Interestingly, this is similar to the free-fall velocity that the two Cygnus A subclusters should have achieved at the observed separation, suggesting that merger has been effective in dissipating the kinetic energy of gas halos into thermal energy, without channeling its major fraction elsewhere (e.g., into turbulence). In A3667, we may be observing a spatial lag between the shock front seen in the X-ray image and the corresponding rise of the electron temperature. A lag of the order of hundreds of kiloparsecs is possible due to the combination of thermal conduction and a finite electron-ion equilibration time. Forthcoming better spatial resolution data will allow a direct measurement of these phenomena using such lags. A2065 has gas density peaks coincident with two central galaxies. A merger with the collision velocity estimated from the temperature map should have swept away such peaks if the subcluster total mass distributions had flat cores in the centers. The fact that the peaks have survived (or quickly reemerged) suggests that the gravitational potential also is strongly peaked. Finally, the observed specific entropy variations in A3667 and Cygnus A indicate that energy injection from a single major merger may be of the order of the full thermal energy of the gas. We hope that these order of magnitude estimates will encourage further work on hydrodynamic simulations, as well as more quantitative representation of the simulation results.Comment: Corrected the Cyg-A figure (errors shown were 1-sigma not 90%); text unchanged. ApJ in press. Latex, 5 pages, 3 figures (2 color), uses emulateapj.st

    Discovery of a New Nearby Star

    Get PDF
    We report the discovery of a nearby star with a very large proper motion of 5.06 +/- 0.03 arcsec/yr. The star is called SO025300.5+165258 and referred to herein as HPMS (high proper motion star). The discovery came as a result of a search of the SkyMorph database, a sensitive and persistent survey that is well suited for finding stars with high proper motions. There are currently only 7 known stars with proper motions > 5 arcsec/yr. We have determined a preliminary value for the parallax of 0.43 +/- 0.13 arcsec. If this value holds our new star ranks behind only the Alpha Centauri system (including Proxima Centauri) and Barnard's star in the list of our nearest stellar neighbors. The spectrum and measured tangential velocity indicate that HPMS is a main-sequence star with spectral type M6.5. However, if our distance measurement is correct, the HPMS is underluminous by 1.2 +/- 0.7 mag.Comment: 5 pages, 3 figures. Submitted to ApJ Letter

    Chandra Observation of the Cluster Environment of a WAT Radio Source in Abell 1446

    Full text link
    Wide-angle tail (WAT) radio sources are often found in the centers of galaxy clusters where intracluster medium (ICM) ram pressure may bend the lobes into their characteristic C-shape. We examine the low redshift (z=0.1035) cluster Abell 1446, host to the WAT radio source 1159+583. The cluster exhibits possible evidence for a small-scale cluster-subcluster merger as a cause of the WAT radio source morphology. This evidence includes the presence of temperature and pressure substructure along the line that bisects the WAT as well as a possible wake of stripped interstellar material or a disrupted cool core to the southeast of the host galaxy. A filament to the north may represent cool, infalling gas that's contributing to the WAT bending while spectroscopically determined redshifts of member galaxies may indicate some component of a merger occurring along the line-of-sight. The WAT model of high flow velocity and low lobe density is examined as another scenario for the bending of 1159+583. It has been argued that such a model would allow the ram pressure due to the galaxy's slow motion through the ICM to shape the WAT source. A temperature profile shows that the cluster is isothermal (kT= 4.0 keV) in a series of annuli reaching a radius of 400 kpc. There is no evidence of an ongoing cooling flow. Temperature, abundance, pressure, density, and mass profiles, as well as two-dimensional maps of temperature and pressure are presented.Comment: 40 AASTeX pages including 15 postscript figures; accepted for publication in Ap
    • …
    corecore