6 research outputs found

    Analysis of genetic variability in Turner syndrome linked to long-term clinical features

    Get PDF
    Background: Women with Turner syndrome (TS) (45,X and related karyotypes) have an increased prevalence of conditions such as diabetes mellitus, obesity, hypothyroidism, autoimmunity, hypertension, and congenital cardiovascular anomalies (CCA). Whilst the risk of developing these co-morbidities may be partly related to haploinsufficiency of key genes on the X chromosome, other mechanisms may be involved. Improving our understanding of underlying processes is important to develop personalized approaches to management. // Objective: We investigated whether: 1) global genetic variability differs in women with TS, which might contribute to co-morbidities; 2) common variants in X genes - on the background of haploinsufficiency - are associated with phenotype (a “two-hit” hypothesis); 3) the previously reported association of autosomal TIMP3 variants with CCA can be replicated. // Methods: Whole exome sequencing was undertaken in leukocyte DNA from 134 adult women with TS and compared to 46,XX controls (n=23), 46,XX women with primary ovarian insufficiency (n=101), and 46,XY controls (n=11). 1) Variability in autosomal and X chromosome genes was analyzed for all individuals; 2) the relation between common X chromosome variants and the long-term phenotypes listed above was investigated in a subgroup of women with monosomy X; 3) TIMP3 variance was investigated in relation to CCA. // Results: Standard filtering identified 6,457,085 autosomal variants and 126,335 X chromosome variants for the entire cohort, whereas a somatic variant pipeline identified 16,223 autosomal and 477 X chromosome changes. 1) Overall exome variability of autosomal genes was similar in women with TS and control/comparison groups, whereas X chromosome variants were proportionate to the complement of X chromosome material; 2) when adjusted for multiple comparisons, no X chromosome gene/variants were strongly enriched in monosomy X women with key phenotypes compared to monosomy X women without these conditions, although several variants of interest emerged; 3) an association between TIMP3 22:32857305:C-T and CCA was found (CCA 13.6%; non-CCA 3.4%, p<0.02). // Conclusions: Women with TS do not have an excess of genetic variability in exome analysis. No obvious X-chromosome variants driving phenotype were found, but several possible genes/variants of interest emerged. A reported association between autosomal TIMP3 variance and congenital cardiac anomalies was replicated

    An integrated single-cell analysis of human adrenal cortex development

    Get PDF
    The adrenal glands synthesize and release essential steroid hormones such as cortisol and aldosterone, but many aspects of human adrenal gland development are not well understood. Here, we combined single-cell and bulk RNA sequencing, spatial transcriptomics, IHC, and micro-focus computed tomography to investigate key aspects of adrenal development in the first 20 weeks of gestation. We demonstrate rapid adrenal growth and vascularization, with more cell division in the outer definitive zone (DZ). Steroidogenic pathways favored androgen synthesis in the central fetal zone, but DZ capacity to synthesize cortisol and aldosterone developed with time. Core transcriptional regulators were identified, with localized expression of HOPX (also known as Hop homeobox/homeobox-only protein) in the DZ. Potential ligand-receptor interactions between mesenchyme and adrenal cortex were seen (e.g., RSPO3/LGR4). Growth-promoting imprinted genes were enriched in the developing cortex (e.g., IGF2, PEG3). These findings reveal aspects of human adrenal development and have clinical implications for understanding primary adrenal insufficiency and related postnatal adrenal disorders, such as adrenal tumor development, steroid disorders, and neonatal stress

    Pathogenic variants in RNPC3 are associated with hypopituitarism and primary ovarian insufficiency

    Get PDF
    Purpose We aimed to investigate the molecular basis underlying a novel phenotype including hypopituitarism associated with primary ovarian insufficiency. Methods We used next-generation sequencing to identify variants in all pedigrees. Expression of Rnpc3/RNPC3 was analyzed by in situ hybridization on murine/human embryonic sections. CRISPR/Cas9 was used to generate mice carrying the p.Leu483Phe pathogenic variant in the conserved murine Rnpc3 RRM2 domain. Results We described 15 patients from 9 pedigrees with biallelic pathogenic variants in RNPC3, encoding a specific protein component of the minor spliceosome, which is associated with a hypopituitary phenotype, including severe growth hormone (GH) deficiency, hypoprolactinemia, variable thyrotropin (also known as thyroid-stimulating hormone) deficiency, and anterior pituitary hypoplasia. Primary ovarian insufficiency was diagnosed in 8 of 9 affected females, whereas males had normal gonadal function. In addition, 2 affected males displayed normal growth when off GH treatment despite severe biochemical GH deficiency. In both mouse and human embryos, Rnpc3/RNPC3 was expressed in the developing forebrain, including the hypothalamus and Rathke’s pouch. Female Rnpc3 mutant mice displayed a reduction in pituitary GH content but with no reproductive impairment in young mice. Male mice exhibited no obvious phenotype. Conclusion Our findings suggest novel insights into the role of RNPC3 in female-specific gonadal function and emphasize a critical role for the minor spliceosome in pituitary and ovarian development and function

    The role of public health nurses in the detection of developmental dysplasia of the hip

    No full text
    Aims  Our study aimed to quantify the role played by public health nurses (PHNs) in the detection of cases of developmental dysplasia of the hip (DDH) not identified by existing national screening processes.  Methods  We conducted a review of all children diagnosed with DDH in our centre over an 18-month period. Referral details and general clinical information were then analysed for all late diagnoses, defined as later than three months of age.  Results  339 infants were diagnosed with at least some degree of dysplasia over the study period, implying an annual incidence of 31.3 cases per 1,000 live births. 86 of these (25.4%) were late diagnoses. 67.9% of referrals of late cases originated with a PHN. A small subgroup of late diagnoses (n = 8) presented with frank hip dislocation.  Conclusion  The proportion of DDH diagnoses made after three months of age remains significant. Our findings suggest that PHN reviews in the first year of life constitute an important ‘safety net’ in expediting the diagnosis of DDH in babies not identified by existing national screening processes. Quality improvement and training interventions would be of value in further supporting this role.</p

    Analysis of genetic variability in Turner syndrome linked to long-term clinical features

    No full text
    BackgroundWomen with Turner syndrome (TS) (45,X and related karyotypes) have an increased prevalence of conditions such as diabetes mellitus, obesity, hypothyroidism, autoimmunity, hypertension, and congenital cardiovascular anomalies (CCA). Whilst the risk of developing these co-morbidities may be partly related to haploinsufficiency of key genes on the X chromosome, other mechanisms may be involved. Improving our understanding of underlying processes is important to develop personalized approaches to management.ObjectiveWe investigated whether: 1) global genetic variability differs in women with TS, which might contribute to co-morbidities; 2) common variants in X genes - on the background of haploinsufficiency - are associated with phenotype (a “two-hit” hypothesis); 3) the previously reported association of autosomal TIMP3 variants with CCA can be replicated.MethodsWhole exome sequencing was undertaken in leukocyte DNA from 134 adult women with TS and compared to 46,XX controls (n=23), 46,XX women with primary ovarian insufficiency (n=101), and 46,XY controls (n=11). 1) Variability in autosomal and X chromosome genes was analyzed for all individuals; 2) the relation between common X chromosome variants and the long-term phenotypes listed above was investigated in a subgroup of women with monosomy X; 3) TIMP3 variance was investigated in relation to CCA.ResultsStandard filtering identified 6,457,085 autosomal variants and 126,335 X chromosome variants for the entire cohort, whereas a somatic variant pipeline identified 16,223 autosomal and 477 X chromosome changes. 1) Overall exome variability of autosomal genes was similar in women with TS and control/comparison groups, whereas X chromosome variants were proportionate to the complement of X chromosome material; 2) when adjusted for multiple comparisons, no X chromosome gene/variants were strongly enriched in monosomy X women with key phenotypes compared to monosomy X women without these conditions, although several variants of interest emerged; 3) an association between TIMP3 22:32857305:C-T and CCA was found (CCA 13.6%; non-CCA 3.4%, p&lt;0.02).ConclusionsWomen with TS do not have an excess of genetic variability in exome analysis. No obvious X-chromosome variants driving phenotype were found, but several possible genes/variants of interest emerged. A reported association between autosomal TIMP3 variance and congenital cardiac anomalies was replicated

    DataSheet_1_Analysis of genetic variability in Turner syndrome linked to long-term clinical features.pdf

    No full text
    BackgroundWomen with Turner syndrome (TS) (45,X and related karyotypes) have an increased prevalence of conditions such as diabetes mellitus, obesity, hypothyroidism, autoimmunity, hypertension, and congenital cardiovascular anomalies (CCA). Whilst the risk of developing these co-morbidities may be partly related to haploinsufficiency of key genes on the X chromosome, other mechanisms may be involved. Improving our understanding of underlying processes is important to develop personalized approaches to management.ObjectiveWe investigated whether: 1) global genetic variability differs in women with TS, which might contribute to co-morbidities; 2) common variants in X genes - on the background of haploinsufficiency - are associated with phenotype (a “two-hit” hypothesis); 3) the previously reported association of autosomal TIMP3 variants with CCA can be replicated.MethodsWhole exome sequencing was undertaken in leukocyte DNA from 134 adult women with TS and compared to 46,XX controls (n=23), 46,XX women with primary ovarian insufficiency (n=101), and 46,XY controls (n=11). 1) Variability in autosomal and X chromosome genes was analyzed for all individuals; 2) the relation between common X chromosome variants and the long-term phenotypes listed above was investigated in a subgroup of women with monosomy X; 3) TIMP3 variance was investigated in relation to CCA.ResultsStandard filtering identified 6,457,085 autosomal variants and 126,335 X chromosome variants for the entire cohort, whereas a somatic variant pipeline identified 16,223 autosomal and 477 X chromosome changes. 1) Overall exome variability of autosomal genes was similar in women with TS and control/comparison groups, whereas X chromosome variants were proportionate to the complement of X chromosome material; 2) when adjusted for multiple comparisons, no X chromosome gene/variants were strongly enriched in monosomy X women with key phenotypes compared to monosomy X women without these conditions, although several variants of interest emerged; 3) an association between TIMP3 22:32857305:C-T and CCA was found (CCA 13.6%; non-CCA 3.4%, pConclusionsWomen with TS do not have an excess of genetic variability in exome analysis. No obvious X-chromosome variants driving phenotype were found, but several possible genes/variants of interest emerged. A reported association between autosomal TIMP3 variance and congenital cardiac anomalies was replicated.</p
    corecore