1,233 research outputs found

    Search for long lived charged massive particles in pp collisions at s-hat = 1.8TeV

    Get PDF
    We report a search for the production of long-lived charged massive particles in a data sample of 90   pb-1 of √s=1.8   TeV pp̅ collisions recorded by the Collider Detector at Fermilab. The search uses the muonlike penetration and anomalously high ionization energy loss signature expected for such a particle to discriminate it from backgrounds. The data are found to agree with background expectations, and cross section limits of O(1) pb are derived using two reference models, a stable quark and a stable scalar lepton

    Class A scavenger receptor 1 (MSR1) restricts hepatitis C virus replication by mediating toll-like receptor 3 recognition of viral RNAs produced in neighboring cells

    Get PDF
    Persistent infections with hepatitis C virus (HCV) may result in life-threatening liver disease, including cirrhosis and cancer, and impose an important burden on human health. Understanding how the virus is capable of achieving persistence in the majority of those infected is thus an important goal. Although HCV has evolved multiple mechanisms to disrupt and block cellular signaling pathways involved in the induction of interferon (IFN) responses, IFN-stimulated gene (ISG) expression is typically prominent in the HCV-infected liver. Here, we show that Toll-like receptor 3 (TLR3) expressed within uninfected hepatocytes is capable of sensing infection in adjacent cells, initiating a local antiviral response that partially restricts HCV replication. We demonstrate that this is dependent upon the expression of class A scavenger receptor type 1 (MSR1). MSR1 binds extracellular dsRNA, mediating its endocytosis and transport toward the endosome where it is engaged by TLR3, thereby triggering IFN responses in both infected and uninfected cells. RNAi-mediated knockdown of MSR1 expression blocks TLR3 sensing of HCV in infected hepatocyte cultures, leading to increased cellular permissiveness to virus infection. Exogenous expression of Myc-MSR1 restores TLR3 signaling in MSR1-depleted cells with subsequent induction of an antiviral state. A series of conserved basic residues within the carboxy-terminus of the collagen superfamily domain of MSR1 are required for binding and transport of dsRNA, and likely facilitate acidification-dependent release of dsRNA at the site of TLR3 expression in the endosome. Our findings reveal MSR1 to be a critical component of a TLR3-mediated pattern recognition receptor response that exerts an antiviral state in both infected and uninfected hepatocytes, thereby limiting the impact of HCV proteins that disrupt IFN signaling in infected cells and restricting the spread of HCV within the liver

    Risk-taking and expenditure in digital roulette: Examining the impact of tailored dynamic information and warnings on gambling attitudes and behaviours.

    Get PDF
    Digital gambling is the fastest growing form of gambling in the world (Reilly & Smith, 2013a). Technological advancements continually increase access to gambling, which has led to increased social acceptance and uptake (Dragicevic & Tsogas, 2014) with Roulette being among the most popular games played both online and on Electronic Gaming Machines. In response, gambling stakeholders have drawn on the structural characteristics of gambling platforms to develop and improve Responsible Gambling (RG) devices for casual gamblers. Many RG data-tracking systems employ intuitive ‘traffic-light’ metaphors that enable gamblers to monitor their gambling (e.g. Wood & Griffiths, 2008), though uptake of voluntary RG devices is low (Schellinck & Schrans, 2011), leading to calls for mandatory RG systems. Another area that has received considerable RG research focus involves the use of pop-up messages (Auer & Griffiths, 2014). Studies have examined various message content, such as correcting erroneous beliefs, encouraging self-appraisal, gambling cessation, and the provision of personalised feedback. To date, findings have been inconsistent but promising. A shift towards the use of personalised information has become the preferred RG strategy, though message content and timing/frequency requires improvement (Griffiths, 2014). Moreover, warning messages are unable to provide continuous feedback to gamblers. In response to this, and calls for a ‘risk meter’ to improve monitoring of gambling behaviours (Wiebe & Philander, 2013), this thesis tested the impact of a risk meter alongside improved pop-up warning messages as RG devices for within-session roulette gambling. The thesis aimed to establish the optimal application of these devices for facilitating safer gambling behaviours. In support of the aims of RG research to evaluate the impact of devices on gambling attitudes and behaviours, the Elaboration Likelihood Model was identified as a suitable framework to test the proposed RG devices (Petty & Cacioppo, 1986). Both the interactive risk meter and pop-up messages were developed based on existing methods and recommendations in the RG literature, and examined via a series of laboratory-based roulette simulation experiments. Overall, results found the risk meter to be most effective when used as an interactive probability meter. Self-appraisal/Informative pop-up warnings were examined alongside expenditure-specific and hyrbid warnings. Findings showed that hybrid messages containing both types of information to be most effective, with optimal display points at 75%, 50%, 25% and 10% of remaining gambling credit. The final study tested both optimised devices (probability meter and hybrid messages). Results showed that using both RG devices in combination was most effective in facilitating reduced gambling risk and early within-session gambling cessation. Findings support the use of personalised, interactive RG devices using accurate context-specific information for the facilitation of safer gambling. The ELM was shown to be an effective model for testing RG devices, though findings suggested only temporary shifts in attitude change and a lack of impact on future gambling intentions. Overall, support for the implementation of RG devices that facilitate positive, temporary behaviour change that do not negatively impact on broader gambling attitudes or gambling enjoyment. Implications for theory, implementation, and RG frameworks are discussed, alongside recommendations for future research.n/

    Virus-specific mechanisms of carcinogenesis in hepatitis C virus associated liver cancer

    Get PDF
    The development of hepatocellular carcinoma (HCC) in persons who are persistently infected with hepatitis C virus (HCV) is a growing problem worldwide. Current antiviral therapies are not effective in many patients with chronic hepatitis C, and a greater understanding of the factors leading to progression to HCC will be necessary to design novel approaches to prevention of HCV-associated HCC. The lack of a small animal model of chronic HCV infection has hampered understanding of these factors. Since HCV is an RNA virus with little potential for integration of its genetic material into the host genome, the mechanisms underlying HCV promotion of cancer are likely to differ from other models of viral carcinogenesis. In patients persistently infected with HCV, chronic inflammation resulting from immune responses against infected hepatocytes is associated with progressive fibrosis and cirrhosis. Cirrhosis is an important risk factor for HCC independent of HCV infection, and a majority of HCV-associated HCC arises in the setting of cirrhosis. However, a significant minority arises in the absence of cirrhosis, indicating that cirrhosis is not a prerequisite for cancer. Other lines of evidence suggest that direct, virus-specific mechanisms may be involved. Transgenic mice expressing HCV proteins develop cancer in the absence of inflammation or immune recognition of the transgene. In vitro studies have revealed multiple interactions of HCV-encoded proteins with cell cycle regulators and tumor suppressor proteins, raising the possibility that HCV can disrupt control of cellular proliferation, or impair the cell's response to DNA damage. A combination of virus-specific, host genetic, environmental, and immune-related factors are likely to determine the progression to HCC in patients who are chronically infected with HCV. Here, we summarize current knowledge of the virus-specific mechanisms that may contribute to HCV-associated HCC

    Identification, Motivation and Facilitation of Domestic Tourism in a Small Island

    Get PDF
    This paper presents a case concerning domestic tourism in the Isle of Man, British Isles; a small maritime nation with Norse heritage. Qualitative interviews find the existence of considerable domestic tourism activity conducted by island residents, including daytrips and overnight stays, and explore the motivational and facilitating factors which underpin this. Such behaviour is identified by residents as touristic and distinct from other leisure pursuits. Yet recognition of domestic tourism in small geographic spaces is currently almost entirely absent. This article attempts to highlight the issue and draw attention to attendant benefits of domestic tourism which include economic and social inputs. These may be relevant to a small island community, and in the case of the Isle of Man help to support an otherwise ailing tourism industry

    Hepatitis C Virus Indirectly Disrupts DNA Damage-Induced p53 Responses by Activating Protein Kinase R

    Get PDF
    ABSTRACT Many DNA tumor viruses promote cellular transformation by inactivating the critically important tumor suppressor protein p53. In contrast, it is not known whether p53 function is disrupted by hepatitis C virus (HCV), a unique, oncogenic RNA virus that is the leading infectious cause of liver cancer in many regions of the world. Here we show that HCV-permissive, liver-derived HepG2 cells engineered to constitutively express microRNA-122 (HepG2/miR-122 cells) have normal p53-mediated responses to DNA damage and that HCV replication in these cells potently suppresses p53 responses to etoposide, an inducer of DNA damage, or nutlin-3, an inhibitor of p53 degradation pathways. Upregulation of p53-dependent targets is consequently repressed within HCV-infected cells, with potential consequences for cell survival. Despite this, p53 function is not disrupted by overexpression of the complete HCV polyprotein, suggesting that altered p53 function may result from the host response to viral RNA replication intermediates. Clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9-mediated ablation of double-stranded RNA (dsRNA)-activated protein kinase R (PKR) restored p53 responses while boosting HCV replication, showing that p53 inhibition results directly from viral activation of PKR. The hepatocellular abundance of phosphorylated PKR is elevated in HCV-infected chimpanzees, suggesting that PKR activation and consequent p53 inhibition accompany HCV infection in vivo . These findings reveal a feature of the host response to HCV infection that may contribute to hepatocellular carcinogenesis. IMPORTANCE Chronic infection with hepatitis C virus (HCV) is the leading cause of liver cancer in most developed nations. However, the mechanisms whereby HCV infection promotes carcinogenesis remain unclear. Here, we demonstrate that HCV infection inhibits the activation of p53 following DNA damage. Contrary to previous reports, HCV protein expression is insufficient to inhibit p53. Rather, p53 inhibition is mediated by cellular protein kinase R (PKR), which is activated by HCV RNA replication and subsequently suppresses global protein synthesis. These results redefine our understanding of how HCV infection influences p53 function. We speculate that persistent disruption of p53-mediated DNA damage responses may contribute to hepatocellular carcinogenesis in chronically infected individuals

    How do persistent infections with hepatitis C virus cause liver cancer?

    Get PDF
    Persistent infection with hepatitis C virus (HCV) is associated with an increased risk of hepatocellular carcinoma (HCC). Cancer typically develops in a setting of chronic hepatic inflammation and advanced fibrosis or cirrhosis, and such tissue represents a pre-neoplastic “cancer field”. However, not all persistent infections progress to HCC and a combination of viral and host immune factors likely to contribute to carcinogenesis. HCV may disrupt cellular pathways involved in detecting and responding to DNA damage, potentially adding to the risk of cancer. Efforts to unravel how HCV promotes HCC are hindered by lack of a robust small animal model, but a better understanding of molecular mechanisms could identify novel biomarkers for early detection and allow for development of improved therapies

    Hepatitis C Virus Induces E6AP-Dependent Degradation of the Retinoblastoma Protein

    Get PDF
    Hepatitis C virus (HCV) is a positive-strand RNA virus that frequently causes persistent infections and is uniquely associated with the development of hepatocellular carcinoma. While the mechanism(s) by which the virus promotes cancer are poorly defined, previous studies indicate that the HCV RNA-dependent RNA polymerase, nonstructural protein 5B (NS5B), forms a complex with the retinoblastoma tumor suppressor protein (pRb), targeting it for degradation, activating E2F-responsive promoters, and stimulating cellular proliferation. Here, we describe the mechanism underlying pRb regulation by HCV and its relevance to HCV infection. We show that the abundance of pRb is strongly downregulated, and its normal nuclear localization altered to include a major cytoplasmic component, following infection of cultured hepatoma cells with either genotype 1a or 2a HCV. We further demonstrate that this is due to NS5B-dependent ubiquitination of pRb and its subsequent degradation via the proteasome. The NS5B-dependent ubiquitination of pRb requires the ubiquitin ligase activity of E6-associated protein (E6AP), as pRb abundance was restored by siRNA knockdown of E6AP or overexpression of a dominant-negative E6AP mutant in cells containing HCV RNA replicons. E6AP also forms a complex with pRb in an NS5B-dependent manner. These findings suggest a novel mechanism for the regulation of pRb in which the HCV NS5B protein traps pRb in the cytoplasm, and subsequently recruits E6AP to this complex in a process that leads to the ubiquitination of pRb. The disruption of pRb/E2F regulatory pathways in cells infected with HCV is likely to promote hepatocellular proliferation and chromosomal instability, factors important for the development of liver cancer

    miR-122 Stimulates Hepatitis C Virus RNA Synthesis by Altering the Balance of Viral RNAs Engaged in Replication versus Translation

    Get PDF
    SummaryThe liver-specific microRNA, miR-122, stabilizes hepatitis C virus (HCV) RNA genomes by recruiting host argonaute 2 (AGO2) to the 5′ end and preventing decay mediated by exonuclease Xrn1. However, HCV replication requires miR-122 in Xrn1-depleted cells, indicating additional functions. We show that miR-122 enhances HCV RNA levels by altering the fraction of HCV genomes available for RNA synthesis. Exogenous miR-122 increases viral RNA and protein levels in Xrn1-depleted cells, with enhanced RNA synthesis occurring before heightened protein synthesis. Inhibiting protein translation with puromycin blocks miR-122-mediated increases in RNA synthesis, but independently enhances RNA synthesis by releasing ribosomes from viral genomes. Additionally, miR-122 reduces the fraction of viral genomes engaged in protein translation. Depleting AGO2 or PCBP2, which binds HCV RNA in competition with miR-122 and promotes translation, eliminates miR-122 stimulation of RNA synthesis. Thus, by displacing PCBP2, miR-122 reduces HCV genomes engaged in translation while increasing the fraction available for RNA synthesis
    corecore