219 research outputs found

    3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitors reduce the risk of perioperative stroke and mortality after carotid endarterectomy

    Get PDF
    ObjectiveThere is increasing evidence that 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) reduce cardiovascular and cerebrovascular events through anti-inflammatory, plaque stabilization, and neuroprotective effects independent of lipid lowering. This study was designed to investigate whether statin use reduces the incidence of perioperative stroke and mortality among patients undergoing carotid endarterectomy (CEA).MethodsAll patients undergoing CEA from 1994 to 2004 at a large academic medical center were retrospectively reviewed. The independent association of statin use and perioperative morbidity was assessed via multivariate logistic regression analysis.ResultsCEA was performed by 13 surgeons on 1566 patients (987 men and 579 women; mean age, 72 Β± 10 years), including 1440 (92%) isolated and 126 (8%) combined CEA/coronary artery bypass grafting procedures. The indication for CEA was symptomatic disease in 660 (42%) cases. Six hundred fifty-seven (42%) patients received a statin medication for at least 1 week before surgery. Statin use was associated with a reduction in perioperative strokes (1.2% vs 4.5%; P < .01), transient ischemic attacks (1.5% vs 3.6%; P < .01), all-cause mortality (0.3% vs 2.1%; P < .01), and median (interquartile range) length of hospitalization (2 days [2-5 days] vs 3 days [2-7 days]; P < .05). Adjusting for all demographics and comorbidities in multivariate analysis, statin use independently reduced the odds of stroke threefold (odds ratio [95% confidence interval], 0.35 [0.15-0.85]; P < .05) and death fivefold (odds ratio [95% confidence interval], 0.20 [0.04-0.99]; P < .05).ConclusionsThese data suggest that perioperative statin use may reduce the incidence of cerebrovascular events and mortality among patients undergoing CEA

    Postoperative Deterioration in Health Related Quality of Life as Predictor for Survival in Patients with Glioblastoma: A Prospective Study

    Get PDF
    BACKGROUND: Studies indicate that acquired deficits negatively affect patients' self-reported health related quality of life (HRQOL) and survival, but the impact of HRQOL deterioration after surgery on survival has not been explored. OBJECTIVE: Assess if change in HRQOL after surgery is a predictor for survival in patients with glioblastoma. METHODS: Sixty-one patients with glioblastoma were included. The majority of patients (n = 56, 91.8%) were operated using a neuronavigation system which utilizes 3D preoperative MRI and updated intraoperative 3D ultrasound volumes to guide resection. HRQOL was assessed using EuroQol 5D (EQ-5D), a generic instrument. HRQOL data were collected 1-3 days preoperatively and after 6 weeks. The mean change in EQ-5D index was -0.05 (95% CI -0.15-0.05) 6 weeks after surgery (p = 0.285). There were 30 patients (49.2%) reporting deterioration 6 weeks after surgery. In a Cox multivariate survival analysis we evaluated deterioration in HRQOL after surgery together with established risk factors (age, preoperative condition, radiotherapy, temozolomide and extent of resection). RESULTS: There were significant independent associations between survival and use of temozolomide (HR 0.30, p = 0.019), radiotherapy (HR 0.26, p = 0.030), and deterioration in HRQOL after surgery (HR 2.02, p = 0.045). Inclusion of surgically acquired deficits in the model did not alter the conclusion. CONCLUSION: Early deterioration in HRQOL after surgery is independently and markedly associated with impaired survival in patients with glioblastoma. Deterioration in patient reported HRQOL after surgery is a meaningful outcome in surgical neuro-oncology, as the measure reflects both the burden of symptoms and treatment hazards and is linked to overall survival

    Primary spinal cord tumors of childhood: effects of clinical presentation, radiographic features, and pathology on survival

    Get PDF
    To determine the relationship between clinical presentation, radiographic features, pathology, and treatment on overall survival of newly diagnosed pediatric primary spinal cord tumors (PSCT). Retrospective analysis of all previously healthy children with newly diagnosed PSCT at a single institution from 1995 to present was performed. Twenty-five pediatric patients (15 boys, average 7.9Β years) were diagnosed with PSCT. Presenting symptoms ranged from 0.25 to 60Β months (average 7.8Β months). Symptom duration was significantly shorter for high grade tumors (average 1.65Β months) than low grade tumors (average 11.2Β months) (PΒ =Β 0.05). MRI revealed tumor (8 cervical, 17 thoracic, 7 lumbar, 7 sacral) volumes of 98–94,080Β mm3 (average 19,474Β mm3). Homogeneous gadolinium enhancement on MRI correlated with lower grade pathology (PΒ =Β 0.003). There was no correlation between tumor grade and volume (PΒ =Β 0.63) or edema (PΒ =Β 0.36) by MRI analysis. Median survival was 53Β months and was dependent on tumor grade (PΒ =Β 0.05) and gross total resection (PΒ =Β 0.01) but not on gender (PΒ =Β 0.49), age of presentation (PΒ =Β 0.82), duration of presenting symptoms (PΒ =Β 0.33), or adjuvant therapies (PΒ =Β 0.17). Stratified Kaplan–Meier analysis confirmed the association between degree of resection and survival after controlling for tumor grade (PΒ =Β 0.01). MRI homogeneous gadolinium enhancement patterns may be helpful in distinguishing low grade from high grade spinal cord malignancies. While tumor grade and gross total resection rather than duration of symptoms correlated with survival in our series, greater than one-third of patients had reported symptoms greater than 6Β months duration prior to diagnosis

    Treatment of mechanically-induced vasospasm of the carotid artery in a primate using intra-arterial verapamil: a technical case report

    Get PDF
    BACKGROUND: Despite improvements in the safety and efficacy of endovascular procedures, considerable morbidity may still be attributed to vasospasm. Vasospasm has proven amenable to pharmacological intervention such as nitrates, intravenous calcium channel blockers (CCBs), and intra-arterial papaverine, particularly in small vessels. However, few studies have focused on medium to large vessel spasm. Here we report the use of an intra-arterial CCB, verapamil, to treat flow-limiting mechanically-induced spasm of the common carotid artery (CCA) in a primate. We believe this to be the first such report of its kind. CASE PRESENTATION: As part of a study assessing the placement feasibility and safety of a catheter capable of delivering intra-arterial cerebroprotective therapy, a female 16 kg baboon prophylaxed with intravenous nitroglycerin underwent transfemoral CCA catheterization with a metallic 6-Fr catheter without signs of acute spasm. The protocol dictated that the catheter remain in the CCA for 12 hours. Upon completion of the protocol, arteriography revealed a marked decrease in CCA size (mean cross-sectional area reduction = 31.6 Β± 1.9%) localized along the catheter length. Intra-arterial verapamil (2 mg/2cc) was injected and arteriography was performed 10 minutes later. Image analysis at 6 points along the CCA revealed a 21.0 Β± 1.7% mean increase in vessel diameter along the length of the catheter corresponding to a 46.7 Β± 4.0% mean increase in cross-sectional area. Mean systemic blood pressure did not deviate more than 10 mm Hg during the procedure. CONCLUSIONS: Intraluminal CCBs like verapamil may constitute an effective endovascular treatment for mechanically-induced vasospasm in medium to large-sized vessels such as the CCA

    Specific Visualization of Glioma Cells in Living Low-Grade Tumor Tissue

    Get PDF
    BACKGROUND: The current therapy of malignant gliomas is based on surgical resection, radio-chemotherapy and chemotherapy. Recent retrospective case-series have highlighted the significance of the extent of resection as a prognostic factor predicting the course of the disease. Complete resection in low-grade gliomas that show no MRI-enhanced images are especially difficult. The aim in this study was to develop a robust, specific, new fluorescent probe for glioma cells that is easy to apply to live tumor biopsies and could identify tumor cells from normal brain cells at all levels of magnification. METHODOLOGY/PRINCIPAL FINDINGS: In this investigation we employed brightly fluorescent, photostable quantum dots (QDs) to specifically target epidermal growth factor receptor (EGFR) that is upregulated in many gliomas. Living glioma and normal cells or tissue biopsies were incubated with QDs coupled to EGF and/or monoclonal antibodies against EGFR for 30 minutes, washed and imaged. The data include results from cell-culture, animal model and ex vivo human tumor biopsies of both low-grade and high-grade gliomas and show high probe specificity. Tumor cells could be visualized from the macroscopic to single cell level with contrast ratios as high as 1000: 1 compared to normal brain tissue. CONCLUSIONS/SIGNIFICANCE: The ability of the targeted probes to clearly distinguish tumor cells in low-grade tumor biopsies, where no enhanced MRI image was obtained, demonstrates the great potential of the method. We propose that future application of specifically targeted fluorescent particles during surgery could allow intraoperative guidance for the removal of residual tumor cells from the resection cavity and thus increase patient survival

    Management of Low-Grade Glioma

    Get PDF
    The optimal management of patients with low-grade glioma (LGG) is controversial. The controversy largely stems from the lack of well-designed clinical trials with adequate follow-up to account for the relatively long progression-free survival and overall survival of patients with LGG. Nonetheless, the literature increasingly suggests that expectant management is no longer optimal. Rather, there is mounting evidence supporting active management including consideration of surgical resection, radiotherapy, chemotherapy, molecular and histopathologic characterization, and use of modern imaging techniques for monitoring and prognostication. In particular, there is growing evidence favoring extensive surgical resection and increasing interest in the role of chemotherapy (especially temozolomide) in the management of these tumors. In this review, we critically analyze emerging trends in the literature with respect to management of LGG, with particular emphasis on reports published during the past year

    Elevated Peripheral Neutrophils and Matrix Metalloproteinase 9 as Biomarkers of Functional Outcome Following Subarachnoid Hemorrhage

    Get PDF
    There is growing evidence supporting the role of inflammation in early brain injury and cerebral vasospasm following subarachnoid hemorrhage (SAH). Matrix metalloproteinases (MMPs) are released by inflammatory cells and can mediate early brain injury via disruption of the extracellular matrix and mediate vasospasm by cleaving endothelin-1 into vasoactive fragments. We hypothesize that inflammation marked by neutrophil elevation and MMP-9 release in human SAH is associated with vasospasm and with poor clinical outcome. We enrolled consecutive SAH subjects (N = 55), banked serial blood and cerebrospinal fluid (CSF) samples, and evaluated their 3-month modified Rankin scores (mRS). Vasospasm was defined as >50% vessel caliber reduction on angiography 6–8Β days post-SAH. A poor outcome was defined as mRS > 2. We compared blood leukocyte and neutrophil counts during post-SAH days 0–14 with respect to vasospasm and 3-month outcome. In a subset of SAH subjects (N = 35), we compared blood and CSF MMP-9 by enzyme-linked immunosorbent assay (ELISA) on post-SAH days 0–1, 2–3, 4–5, 6–8, and 10–14 with respect to vasospasm and to 3-month outcome. Persistent elevation of blood leukocyte (p = 0.0003) and neutrophil (p = 0.0002) counts during post-SAH days 0–14 are independently associated with vasospasm after adjustment for major confounders. In the same time period, blood neutrophil count (post-SAH days 2–3, p = 0.018), blood MMP-9 (post-SAH days 4–5, p = 0.045), and CSF MMP-9 (post-SAH days 2–3, p = 0.05) are associated with poor 3-month SAH clinical outcome. Neutrophil count correlates with blood MMP-9 (post-SAH days 6–8, R = 0.39; p = 0.055; post-SAH days 10–14, R = 0.79; p < 0.0001), and blood MMP-9 correlates with CSF MMP-9 (post-SAH days 4–5, R = 0.72; p = 0.0002). Elevation of CSF MMP-9 during post-SAH days 0–14 is associated with poor 3-month outcome (p = 0.0078). Neither CSF nor blood MMP-9 correlates with vasospasm. Early rise in blood neutrophil count and blood and CSF MMP-9 are associated with poor 3-month SAH clinical outcome. In blood, neutrophil count correlates with MMP-9 levels, suggesting that neutrophils may be an important source of blood MMP-9 early in SAH. Similarly, CSF and blood MMP-9 correlate positively early in the course of SAH, suggesting that blood may be an important source of CSF MMP-9. Blood and CSF MMP-9 are associated with clinical outcome but not with vasospasm, suggesting that MMP-9 may mediate brain injury independent of vasospasm in SAH. Future in vitro studies are needed to investigate the role of MMP-9 in SAH-related brain injury. Larger clinical studies are needed to validate blood and CSF MMP-9 as potential biomarkers for SAH outcome
    • …
    corecore