2,252 research outputs found
An Exploratory Investigation of the Effects of a Thin Plastic Film Cover on the Profile Drag of an Aircraft Wing Panel
Exploratory wind tunnel tests were conducted on a large chord aircraft wing panel to evaluate the potential for drag reduction resulting from the application of a thin plastic film cover. The tests were conducted at a Mach number of 0.15 over a Reynolds number range from about 7 x 10 to the 6th power to 63 x 10 to the 6th power
Wind-tunnel results for an improved 21-percent-thick low-speed airfoil section
Low speed wind tunnel tests were conducted to evaluate the effects on performance of modifying a 23 percent thick low speed airfoil. The airfoil contour was altered to reduce the upper-surface adverse pressure gradient and hence reduce boundary layer separation. The chord Reynolds number varied from about 2,000,000 to 9,000,000
Infrared Lighting Does Not Suppress Catch of Codling Moth (Lepidoptera: Tortricidae) in Pheromone-Baited Monitoring Traps
Video cameras are increasingly being used to record insect behaviors in the field over prolonged intervals. A nagging question about crepuscular and nocturnal recordings is whether or not infrared light emitted by such cameras to illuminate the scene influences the behaviors of the subjects or study outcomes. Here we quantified catches of male codling moths, Cydia pomonella (L.), responding to sex pheromone-baited monitoring traps illuminated with infrared, red, white, or no light. No statistically significant differences were found between any of these treatments
NASA low- and medium-speed airfoil development
The status of NASA low and medium speed airfoil research is discussed. Effects of airfoil thickness-chord ratios varying from 9 percent to 21 percent on the section characteristics for a design lift coefficient of 0.40 are presented for the initial low speed family of airfoils. Also, modifications to the 17-percent low-speed airfoil to reduce the pitching-moment coefficient and to the 21-percent low speed airfoil results are shown for two new medium speed airfoils with thickness ratios of 13 percent and 17 percent and design-lift coefficients of 0.30. Applications of NASA-developed airfoils to general aviation aircraft are summarized
Low-speed aerodynamic characteristics of a 13-percent-thick airfoil section designed for general aviation applications
Wind-tunnel tests were conducted to determine the low-speed section characteristics of a 13 percent-thick airfoil designed for general aviation applications. The results were compared with NACA 12 percent-thick sections and with the 17 percent-thick NASA airfoil. The tests were conducted ovar a Mach number range from 0.10 to 0.35. Chord Reynolds numbers varied from about 2,000,000 to 9,000,000
Wind tunnel testing of low-drag airfoils
Results are presented for the measured performance recently obtained on several airfoil concepts designed to achieve low drag by maintaining extensive regions of laminar flow without compromising high-lift performance. The wind tunnel results extend from subsonic to transonic speeds and include boundary-layer control through shaping and suction. The research was conducted in the NASA Langley 8-Ft Transonic Pressure Tunnel (TPT) and Low Turbulence Pressure Tunnel (LTPT) which have been developed for testing such low-drag airfoils. Emphasis is placed on identifying some of the major factors influencing the anticipated performance of low-drag airfoils
Inverse scattering and solitons in affine Toda field theories II
New single soliton solutions to the affine Toda field theories are
constructed, exhibiting previously unobserved topological charges. This goes
some of the way in filling the weights of the fundamental representations, but
nevertheless holes in the representations remain. We use the group doublecross
product form of the inverse scattering method, and restrict ourselves to the
rank one solutions.Comment: 19 pages, latex, 12 fig
Low-speed aerodynamic characteristics of a 17-percent-thick supercritical airfoil section, including a comparison between wind-tunnel and flight data
Wind-tunnel tests were conducted to determine the low speed two dimensional aerodynamic characteristics of a 17-percent-thick supercritical airfoil. The results were compared with three dimensional wind-tunnel and flight data. The tests were conducted over a Mach number range from 0.15 to 0.30. Reynolds numbers based on the airfoil chord varied from 2.0x10 to the 6th power to 15.0x10 to the 6th power
Experimental Results for a Flapped Natural-laminar-flow Airfoil with High Lift/drag Ratio
Experimental results have been obtained for a flapped natural-laminar-flow airfoil, NLF(1)-0414F, in the Langley Low-Turbulence Pressure Tunnel. The tests were conducted over a Mach number range from 0.05 to 0.40 and a chord Reynolds number range from about 3.0 x 10(6) to 22.0 x 10(6). The airfoil was designed for 0.70 chord laminar flow on both surfaces at a lift coefficient of 0.40, a Reynolds number of 10.0 x 10(6), and a Mach number of 0.40. A 0.125 chord simple flap was incorporated in the design to increase the low-drag, lift-coefficient range. Results were also obtained for a 0.20 chord split-flap deflected 60 deg
A procedure to analyze nonlinear density waves in Saturn's rings using several occultation profiles
Cassini radio science experiments have provided multiple occultation optical
depth profiles of Saturn's rings that can be used in combination to analyze
density waves. This paper establishes an accurate procedure of inversion of the
wave profiles to reconstruct the wave kinematic parameters as a function of
semi-major axis, in the nonlinear regime. This procedure is achieved from
simulated data in the presence of realistic noise perturbations, to control the
reconstruction error. By way of illustration we have applied our procedure to
the Mimas 5:3 density wave. We were able to recover precisely the kinematic
parameters from the radio experiment occultation data in most of the
propagation region; a preliminary analysis of the pressure-corrected dispersion
allowed us to determine new but still uncertain values for the opacity
( cm/g) and velocity dispersion of ( cm/s) in
the wave region. Our procedure constitutes the first step in our planned
analysis of the density waves of Saturn's rings. It is very accurate and
efficient in the far-wave region. However, improvements are required within the
first wavelength. The ways in which this method can be used to establish
diagnostics of ring physics are outlined.Comment: 50 pages,13 figures, 2 tables. Published in Icarus
- …